Jump to: Tests | Visualizers | Files | Wiki

Sim_LAMMPS_BOP_WardZhouWong_2012_CdTe__SM_509819366101_001

Interatomic potential for Cadmium (Cd), Tellurium (Te).
Use this Potential

Title
A single sentence description.
LAMMPS BOP potential for the Cd-Te system developed by Ward et al. (2012) v001
Citations

This panel presents the list of papers that cite the interatomic potential whose page you are on (by its primary sources given below in "How to Cite").

Articles marked by the green star have been determined to have used the potential in computations (as opposed to only citing it as background information) by a machine learning (ML) algorithm developed by the KIM Team that analyzes the full text of the papers. Articles that do not use it are marked with a null symbol, and in cases where no information is available a question mark is shown.

The full text of the articles used to train the ML algorithm is provided by the Allen Institute for AI through the Semantic Scholar project.

The word cloud to the right is built from the abstracts of the primary sources and using papers to give a sense of the types of physical phenomena to which this interatomic potential is applied.

IMPORTANT NOTE: Usage can only be determined for articles for which Semantic Scholar can provide OpenKIM with the full text. Where this is not the case, we ask the community for help in determining usage. If you know whether an article did or did not use a potential, let us know by clicking the cloud icon by the article and completing a one question form.

The word cloud indicates applications of this Potential. The bar chart shows citations per year of this Potential.

Help us to determine which of the papers that cite this potential actually used it to perform calculations. If you know, click the  .
Description CdTe and Cd1−xZnxTe are the leading semiconductor compounds for both photovoltaic and radiation detection applications. The performance of these materials is sensitive to the presence of atomic-scale defects in the structures. To enable accurate studies of these defects using modern atomistic simulation technologies, we have developed a high-fidelity analytical bond-order potential for the CdTe system. This potential incorporates primary (σ) and secondary (π) bonding and the valence dependence of the heteroatom interactions. The functional forms of the potential are directly derived from quantum-mechanical tight-binding theory under the condition that the first two and first four levels of the expanded Green's function for the σ- and π-bond orders, respectively, are retained. The potential parameters are optimized using iteration cycles that include first-fitting properties of a variety of elemental and compound configurations (with coordination varying from 1 to 12) including small clusters, bulk lattices, defects, and surfaces, and then checking crystalline growth through vapor deposition simulations. It is demonstrated that this CdTe bond-order potential gives structural and property trends close to those seen in experiments and quantum-mechanical calculations and provides a good description of melting temperature, defect characteristics, and surface reconstructions of the CdTe compound. Most importantly, this potential captures the crystalline growth of the ground-state structures for Cd, Te, and CdTe phases in vapor deposition simulations.


HISTORY:

Changes in version 001:
* Parameter file formatted for compatibility with recent LAMMPS versions
* Ghost atom communication cutoff increased from 14.70 Angstroms to 14.71 Angstroms to account for new, more strict comparison with max bop cutoff done in recent LAMMPS versions
Species
The supported atomic species.
Cd, Te
Disclaimer
A statement of applicability provided by the contributor, informing users of the intended use of this KIM Item.
None
Content Origin LAMMPS package 30-Jul-2021
Contributor Ronald E. Miller
Maintainer Ronald E. Miller
Developer Donald K. Ward
Xiaowang Zhou
Bryan M. Wong
F. P. Doty
Jonathan A. Zimmerman
Published on KIM 2021
How to Cite

This Simulator Model originally published in [1] is archived in OpenKIM [2-4].

[1] Ward DK, Zhou XW, Wong BM, Doty FP, Zimmerman JA. Analytical bond-order potential for the cadmium telluride binary system. Phys Rev B [Internet]. 2012Mar;85(11):115206. Available from: https://link.aps.org/doi/10.1103/PhysRevB.85.115206 doi:10.1103/PhysRevB.85.115206 — (Primary Source) A primary source is a reference directly related to the item documenting its development, as opposed to other sources that are provided as background information.

[2] LAMMPS BOP potential for the Cd-Te system developed by Ward et al. (2012) v001. OpenKIM; 2021. doi:10.25950/5c67ce36

[3] Tadmor EB, Elliott RS, Sethna JP, Miller RE, Becker CA. The potential of atomistic simulations and the Knowledgebase of Interatomic Models. JOM. 2011;63(7):17. doi:10.1007/s11837-011-0102-6

[4] Elliott RS, Tadmor EB. Knowledgebase of Interatomic Models (KIM) Application Programming Interface (API). OpenKIM; 2011. doi:10.25950/ff8f563a

Click here to download the above citation in BibTeX format.
Funding Not available
Short KIM ID
The unique KIM identifier code.
SM_509819366101_001
Extended KIM ID
The long form of the KIM ID including a human readable prefix (100 characters max), two underscores, and the Short KIM ID. Extended KIM IDs can only contain alpha-numeric characters (letters and digits) and underscores and must begin with a letter.
Sim_LAMMPS_BOP_WardZhouWong_2012_CdTe__SM_509819366101_001
DOI 10.25950/5c67ce36
https://doi.org/10.25950/5c67ce36
https://search.datacite.org/works/10.25950/5c67ce36
KIM Item TypeSimulator Model
KIM API Version2.2
Simulator Name
The name of the simulator as defined in kimspec.edn.
LAMMPS
Potential Type bop
Simulator Potential bop
Previous Version Sim_LAMMPS_BOP_WardZhouWong_2012_CdTe__SM_509819366101_000

(Click here to learn more about Verification Checks)

Grade Name Category Brief Description Full Results Aux File(s)
N/A vc-species-supported-as-stated mandatory
The model supports all species it claims to support; see full description.
Results Files
N/A vc-periodicity-support mandatory
Periodic boundary conditions are handled correctly; see full description.
Results Files
N/A vc-permutation-symmetry mandatory
Total energy and forces are unchanged when swapping atoms of the same species; see full description.
Results Files
N/A vc-forces-numerical-derivative consistency
Forces computed by the model agree with numerical derivatives of the energy; see full description.
Results Files
N/A vc-dimer-continuity-c1 informational
The energy versus separation relation of a pair of atoms is C1 continuous (i.e. the function and its first derivative are continuous); see full description.
Results Files
N/A vc-objectivity informational
Total energy is unchanged and forces transform correctly under rigid-body translation and rotation; see full description.
Results Files
N/A vc-inversion-symmetry informational
Total energy is unchanged and forces change sign when inverting a configuration through the origin; see full description.
Results Files
N/A vc-memory-leak informational
The model code does not have memory leaks (i.e. it releases all allocated memory at the end); see full description.
Results Files
N/A vc-thread-safe mandatory
The model returns the same energy and forces when computed in serial and when using parallel threads for a set of configurations. Note that this is not a guarantee of thread safety; see full description.
Results Files


BCC Lattice Constant

This bar chart plot shows the mono-atomic body-centered cubic (bcc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

Cohesive Energy Graph

This graph shows the cohesive energy versus volume-per-atom for the current mode for four mono-atomic cubic phases (body-centered cubic (bcc), face-centered cubic (fcc), simple cubic (sc), and diamond). The curve with the lowest minimum is the ground state of the crystal if stable. (The crystal structure is enforced in these calculations, so the phase may not be stable.) Graphs are generated for each species supported by the model.

(No matching species)

Diamond Lattice Constant

This bar chart plot shows the mono-atomic face-centered diamond lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

FCC Elastic Constants

This bar chart plot shows the mono-atomic face-centered cubic (fcc) elastic constants predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

FCC Lattice Constant

This bar chart plot shows the mono-atomic face-centered cubic (fcc) lattice constant predicted by the current model (shown in red) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

FCC Stacking Fault Energies

This bar chart plot shows the intrinsic and extrinsic stacking fault energies as well as the unstable stacking and unstable twinning energies for face-centered cubic (fcc) predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

FCC Surface Energies

This bar chart plot shows the mono-atomic face-centered cubic (fcc) relaxed surface energies predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

SC Lattice Constant

This bar chart plot shows the mono-atomic simple cubic (sc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

Cubic Crystal Basic Properties Table

Species: Cd

Species: Te



  • No Tests associated with this Model
  • Tests are paired to Models through Test Results





Wiki is ready to accept new content.

Login to edit Wiki content