Jump to: Tests | Visualizers | Files | Wiki

Sim_LAMMPS_BOP_WardZhouWong_2013_CdZnTe__SM_010061267051_000

Interatomic potential for Cadmium (Cd), Tellurium (Te), Zinc (Zn).
Use this Potential

Title
A single sentence description.
LAMMPS BOP potential for the Cd-Zn-Te system developed by Ward et al. (2013) v000
Citations

This panel presents the list of papers that cite the interatomic potential whose page you are on (by its primary sources given below in "How to Cite").

Articles marked by the green star have been determined to have used the potential in computations (as opposed to only citing it as background information) by a machine learning (ML) algorithm developed by the KIM Team that analyzes the full text of the papers. Articles that do not use it are marked with a null symbol, and in cases where no information is available a question mark is shown.

The full text of the articles used to train the ML algorithm is provided by the Allen Institute for AI through the Semantic Scholar project.

The word cloud to the right is built from the abstracts of the primary sources and using papers to give a sense of the types of physical phenomena to which this interatomic potential is applied.

IMPORTANT NOTE: Usage can only be determined for articles for which Semantic Scholar can provide OpenKIM with the full text. Where this is not the case, we ask the community for help in determining usage. If you know whether an article did or did not use a potential, let us know by clicking the cloud icon by the article and completing a one question form.

The word cloud indicates applications of this Potential. The bar chart shows citations per year of this Potential.

Help us to determine which of the papers that cite this potential actually used it to perform calculations. If you know, click the  .
Description Identified as "version 2" of Sim_LAMMPS_BOP_WardZhouWong_2012_CdZnTe__SM_409035133405_000.

Abstract:

This paper reports an updated parameterization for a CdTe bond order potential. The original potential is a rigorously parameterized analytical bond order potential for ternary the Cd-Zn-Te systems. This potential effectively captures property trends of multiple Cd, Zn, Te, CdZn, CdTe, ZnTe, and Cd(1-x)Zn(x)Te phases including clusters, lattices, defects, and surfaces. It also enables crystalline growth simulations of stoichiometric compounds/alloys from non-stoichiometric vapors. However, the potential over predicts the zinc-blende CdTe lattice constant compared to experimental data. Here, we report a refined analytical Cd-Zn-Te bond order potential parameterization that predicts a better CdTe lattice constant. Characteristics of the second potential are given based on comparisons with both literature potentials and the quantum mechanical calculations.
Species
The supported atomic species.
Cd, Te, Zn
Disclaimer
A statement of applicability provided by the contributor, informing users of the intended use of this KIM Item.
None
Content Origin LAMMPS package 22-Sep-2017
Contributor Ronald E. Miller
Maintainer Ronald E. Miller
Published on KIM 2019
How to Cite

This Simulator Model originally published in [1] is archived in OpenKIM [2-4].

[1] Ward DK, Zhou X, Wong BM, Doty FP. A refined parameterization of the analytical Cd–Zn–Te bond-order potential. Journal of Molecular Modeling [Internet]. 2013Nov;19(12):5469–77. Available from: https://doi.org/10.1007/s00894-013-2004-8 doi:10.1007/s00894-013-2004-8 — (Primary Source) A primary source is a reference directly related to the item documenting its development, as opposed to other sources that are provided as background information.

[2] LAMMPS BOP potential for the Cd-Zn-Te system developed by Ward et al. (2013) v000. OpenKIM; 2019. doi:10.25950/eccabac6

[3] Tadmor EB, Elliott RS, Sethna JP, Miller RE, Becker CA. The potential of atomistic simulations and the Knowledgebase of Interatomic Models. JOM. 2011;63(7):17. doi:10.1007/s11837-011-0102-6

[4] Elliott RS, Tadmor EB. Knowledgebase of Interatomic Models (KIM) Application Programming Interface (API). OpenKIM; 2011. doi:10.25950/ff8f563a

Click here to download the above citation in BibTeX format.
Funding Not available
Short KIM ID
The unique KIM identifier code.
SM_010061267051_000
Extended KIM ID
The long form of the KIM ID including a human readable prefix (100 characters max), two underscores, and the Short KIM ID. Extended KIM IDs can only contain alpha-numeric characters (letters and digits) and underscores and must begin with a letter.
Sim_LAMMPS_BOP_WardZhouWong_2013_CdZnTe__SM_010061267051_000
DOI 10.25950/eccabac6
https://doi.org/10.25950/eccabac6
https://search.datacite.org/works/10.25950/eccabac6
KIM Item TypeSimulator Model
KIM API Version2.1
Simulator Name
The name of the simulator as defined in kimspec.edn.
LAMMPS
Potential Type bop
Simulator Potential bop

(Click here to learn more about Verification Checks)

Grade Name Category Brief Description Full Results Aux File(s)
P vc-species-supported-as-stated mandatory
The model supports all species it claims to support; see full description.
Results Files
F vc-periodicity-support mandatory
Periodic boundary conditions are handled correctly; see full description.
Results Files
P vc-permutation-symmetry mandatory
Total energy and forces are unchanged when swapping atoms of the same species; see full description.
Results Files
B vc-forces-numerical-derivative consistency
Forces computed by the model agree with numerical derivatives of the energy; see full description.
Results Files
F vc-dimer-continuity-c1 informational
The energy versus separation relation of a pair of atoms is C1 continuous (i.e. the function and its first derivative are continuous); see full description.
Results Files
P vc-objectivity informational
Total energy is unchanged and forces transform correctly under rigid-body translation and rotation; see full description.
Results Files
P vc-inversion-symmetry informational
Total energy is unchanged and forces change sign when inverting a configuration through the origin; see full description.
Results Files
P vc-memory-leak informational
The model code does not have memory leaks (i.e. it releases all allocated memory at the end); see full description.
Results Files
N/A vc-thread-safe mandatory
The model returns the same energy and forces when computed in serial and when using parallel threads for a set of configurations. Note that this is not a guarantee of thread safety; see full description.
Results Files


BCC Lattice Constant

This bar chart plot shows the mono-atomic body-centered cubic (bcc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Zn
Species: Cd
Species: Te


Cohesive Energy Graph

This graph shows the cohesive energy versus volume-per-atom for the current mode for four mono-atomic cubic phases (body-centered cubic (bcc), face-centered cubic (fcc), simple cubic (sc), and diamond). The curve with the lowest minimum is the ground state of the crystal if stable. (The crystal structure is enforced in these calculations, so the phase may not be stable.) Graphs are generated for each species supported by the model.

Species: Te
Species: Cd
Species: Zn


Diamond Lattice Constant

This bar chart plot shows the mono-atomic face-centered diamond lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Cd
Species: Zn
Species: Te


FCC Elastic Constants

This bar chart plot shows the mono-atomic face-centered cubic (fcc) elastic constants predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Zn
Species: Cd
Species: Te


FCC Lattice Constant

This bar chart plot shows the mono-atomic face-centered cubic (fcc) lattice constant predicted by the current model (shown in red) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Cd
Species: Zn
Species: Te


FCC Stacking Fault Energies

This bar chart plot shows the intrinsic and extrinsic stacking fault energies as well as the unstable stacking and unstable twinning energies for face-centered cubic (fcc) predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

FCC Surface Energies

This bar chart plot shows the mono-atomic face-centered cubic (fcc) relaxed surface energies predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

SC Lattice Constant

This bar chart plot shows the mono-atomic simple cubic (sc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Cd
Species: Te
Species: Zn


Cubic Crystal Basic Properties Table

Species: Cd

Species: Te

Species: Zn





Cohesive energy versus lattice constant curve for monoatomic cubic lattices v003

Creators: Daniel S. Karls
Contributor: karls
Publication Year: 2019
DOI: https://doi.org/10.25950/64cb38c5

This Test Driver uses LAMMPS to compute the cohesive energy of a given monoatomic cubic lattice (fcc, bcc, sc, or diamond) at a variety of lattice spacings. The lattice spacings range from a_min (=a_min_frac*a_0) to a_max (=a_max_frac*a_0) where a_0, a_min_frac, and a_max_frac are read from stdin (a_0 is typically approximately equal to the equilibrium lattice constant). The precise scaling and number of lattice spacings sampled between a_min and a_0 (a_0 and a_max) is specified by two additional parameters passed from stdin: N_lower and samplespacing_lower (N_upper and samplespacing_upper). Please see README.txt for further details.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Cohesive energy versus lattice constant curve for bcc Cd v003 view 3999
Cohesive energy versus lattice constant curve for bcc Te v003 view 3775
Cohesive energy versus lattice constant curve for bcc Zn v003 view 4223
Cohesive energy versus lattice constant curve for diamond Cd v003 view 3295
Cohesive energy versus lattice constant curve for diamond Te v003 view 3167
Cohesive energy versus lattice constant curve for diamond Zn v003 view 3487
Cohesive energy versus lattice constant curve for fcc Cd v003 view 4287
Cohesive energy versus lattice constant curve for fcc Te v003 view 3871
Cohesive energy versus lattice constant curve for fcc Zn v003 view 4319
Cohesive energy versus lattice constant curve for sc Cd v003 view 3647
Cohesive energy versus lattice constant curve for sc Te v003 view 3455
Cohesive energy versus lattice constant curve for sc Zn v003 view 3679


Elastic constants for cubic crystals at zero temperature and pressure v006

Creators: Junhao Li and Ellad Tadmor
Contributor: tadmor
Publication Year: 2019
DOI: https://doi.org/10.25950/5853fb8f

Computes the cubic elastic constants for some common crystal types (fcc, bcc, sc, diamond) by calculating the hessian of the energy density with respect to strain. An estimate of the error associated with the numerical differentiation performed is reported.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Elastic constants for bcc Cd at zero temperature v006 view 7262
Elastic constants for bcc Te at zero temperature v006 view 6622
Elastic constants for bcc Zn at zero temperature v006 view 8477
Elastic constants for diamond Cd at zero temperature v001 view 11740
Elastic constants for diamond Te at zero temperature v001 view 9821
Elastic constants for diamond Zn at zero temperature v001 view 18202
Elastic constants for fcc Cd at zero temperature v006 view 12220
Elastic constants for fcc Te at zero temperature v006 view 12284
Elastic constants for fcc Zn at zero temperature v006 view 7901
Elastic constants for sc Cd at zero temperature v006 view 6526
Elastic constants for sc Te at zero temperature v006 view 3935
Elastic constants for sc Zn at zero temperature v006 view 5246


Elastic constants for hexagonal crystals at zero temperature v003

Creators: Junhao Li
Contributor: jl2922
Publication Year: 2018
DOI: https://doi.org/10.25950/2e4b93d9

Computes the elastic constants for hcp crystals by calculating the hessian of the energy density with respect to strain. An estimate of the error associated with the numerical differentiation performed is reported.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Elastic constants for hcp Cd at zero temperature view 7642
Elastic constants for hcp Te at zero temperature view 7448
Elastic constants for hcp Zn at zero temperature view 8899


Equilibrium lattice constant and cohesive energy of a cubic lattice at zero temperature and pressure v007

Creators: Daniel S. Karls and Junhao Li
Contributor: karls
Publication Year: 2019
DOI: https://doi.org/10.25950/2765e3bf

Equilibrium lattice constant and cohesive energy of a cubic lattice at zero temperature and pressure.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Equilibrium zero-temperature lattice constant for bcc Cd v007 view 7357
Equilibrium zero-temperature lattice constant for bcc Te v007 view 10844
Equilibrium zero-temperature lattice constant for bcc Zn v007 view 8317
Equilibrium zero-temperature lattice constant for diamond Cd v007 view 3341763
Equilibrium zero-temperature lattice constant for diamond Te v007 view 4396184
Equilibrium zero-temperature lattice constant for diamond Zn v007 view 898155
Equilibrium zero-temperature lattice constant for fcc Cd v007 view 66473
Equilibrium zero-temperature lattice constant for fcc Te v007 view 50894
Equilibrium zero-temperature lattice constant for fcc Zn v007 view 17690
Equilibrium zero-temperature lattice constant for sc Cd v007 view 6430
Equilibrium zero-temperature lattice constant for sc Te v007 view 6270
Equilibrium zero-temperature lattice constant for sc Zn v007 view 6078


Equilibrium lattice constants for hexagonal bulk structures at zero temperature and pressure v004

Creators: Junhao Li
Contributor: jl2922
Publication Year: 2018
DOI: https://doi.org/10.25950/25bcc28b

Calculates lattice constant of hexagonal bulk structures at zero temperature and pressure by using simplex minimization to minimize the potential energy.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Equilibrium lattice constants for hcp Cd view 100795
Equilibrium lattice constants for hcp Te view 80771
Equilibrium lattice constants for hcp Zn view 118884




Wiki is ready to accept new content.

Login to edit Wiki content