Title
A single sentence description.
|
LAMMPS EAM potential for Fe-Cr-W developed by Bonny et al. (2013) v000 |
---|---|
Citations
This panel presents the list of papers that cite the interatomic potential whose page you are on (by its primary sources given below in "How to Cite"). Articles marked by the green star have been determined to have used the potential in computations (as opposed to only citing it as background information) by a machine learning (ML) algorithm developed by the KIM Team that analyzes the full text of the papers. Articles that do not use it are marked with a null symbol, and in cases where no information is available a question mark is shown. The full text of the articles used to train the ML algorithm is provided by the Allen Institute for AI through the Semantic Scholar project. The word cloud to the right is built from the abstracts of the primary sources and using papers to give a sense of the types of physical phenomena to which this interatomic potential is applied. IMPORTANT NOTE: Usage can only be determined for articles for which Semantic Scholar can provide OpenKIM with the full text. Where this is not the case, we ask the community for help in determining usage. If you know whether an article did or did not use a potential, let us know by clicking the cloud icon by the article and completing a one question form. |
The word cloud indicates applications of this Potential. The bar chart shows citations per year of this Potential. ![]()
Help us to determine which of the papers that cite this potential actually used it to perform calculations. If you know, click the .
|
Description | Reduced activation steels are considered as structural materials for future fusion reactors. Besides iron and the main alloying element chromium, these steels contain other minor alloying elements, typically tungsten, vanadium and tantalum. In this work we study the impact of chromium and tungsten, being major alloying elements of ferritic Fe–Cr–W-based steels, on the stability and mobility of vacancy defects, typically formed under irradiation in collision cascades. For this purpose, we perform ab initio calculations, develop a many-body interatomic potential (EAM formalism) for large-scale calculations, validate the potential and apply it using an atomistic kinetic Monte Carlo method to characterize the lifetime and diffusivity of vacancy clusters. To distinguish the role of Cr and W we perform atomistic kinetic Monte Carlo simulations in Fe–Cr, Fe–W and Fe–Cr–W alloys. Within the limitation of transferability of the potentials it is found that both Cr and W enhance the diffusivity of vacancy clusters, while only W strongly reduces their lifetime. The cluster lifetime reduction increases with W concentration and saturates at about 1-2 at.%. The obtained results imply that W acts as an efficient 'breaker' of small migrating vacancy clusters and therefore the short-term annealing process of cascade debris is modified by the presence of W, even in small concentrations. |
Species
The supported atomic species.
| Cr, Fe, W |
Disclaimer
A statement of applicability provided by the contributor, informing users of the intended use of this KIM Item.
|
None |
Content Origin | NIST IPRP (https://www.ctcms.nist.gov/potentials/Fe.html#Fe-Cr-W) |
Contributor |
Daniel S. Karls |
Maintainer |
Daniel S. Karls |
Published on KIM | 2019 |
How to Cite | Click here to download this citation in BibTeX format. |
Funding | Not available |
Short KIM ID
The unique KIM identifier code.
| SM_699257350704_000 |
Extended KIM ID
The long form of the KIM ID including a human readable prefix (100 characters max), two underscores, and the Short KIM ID. Extended KIM IDs can only contain alpha-numeric characters (letters and digits) and underscores and must begin with a letter.
| Sim_LAMMPS_EAM_BonnyCastinBullens_2013_FeCrW__SM_699257350704_000 |
DOI |
10.25950/ef757f28 https://doi.org/10.25950/ef757f28 https://search.datacite.org/works/10.25950/ef757f28 |
KIM Item Type | Simulator Model |
KIM API Version | 2.1 |
Simulator Name
The name of the simulator as defined in kimspec.edn.
| LAMMPS |
Potential Type | eam |
Simulator Potential | hybrid/overlay |
Programming Language(s)
The programming languages used in the code and the percentage of the code written in each one.
| 100.00% F# |
Grade | Name | Category | Brief Description | Full Results | Aux File(s) |
---|---|---|---|---|---|
P | vc-species-supported-as-stated | mandatory | The model supports all species it claims to support; see full description. |
Results | Files |
P | vc-periodicity-support | mandatory | Periodic boundary conditions are handled correctly; see full description. |
Results | Files |
P | vc-permutation-symmetry | mandatory | Total energy and forces are unchanged when swapping atoms of the same species; see full description. |
Results | Files |
B | vc-forces-numerical-derivative | consistency | Forces computed by the model agree with numerical derivatives of the energy; see full description. |
Results | Files |
N/A | vc-dimer-continuity-c1 | informational | The energy versus separation relation of a pair of atoms is C1 continuous (i.e. the function and its first derivative are continuous); see full description. |
Results | Files |
P | vc-objectivity | informational | Total energy is unchanged and forces transform correctly under rigid-body translation and rotation; see full description. |
Results | Files |
P | vc-inversion-symmetry | informational | Total energy is unchanged and forces change sign when inverting a configuration through the origin; see full description. |
Results | Files |
N/A | vc-memory-leak | informational | The model code does not have memory leaks (i.e. it releases all allocated memory at the end); see full description. |
Results | Files |
N/A | vc-thread-safe | mandatory | The model returns the same energy and forces when computed in serial and when using parallel threads for a set of configurations. Note that this is not a guarantee of thread safety; see full description. |
Results | Files |
This bar chart plot shows the mono-atomic body-centered cubic (bcc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.
This graph shows the cohesive energy versus volume-per-atom for the current mode for four mono-atomic cubic phases (body-centered cubic (bcc), face-centered cubic (fcc), simple cubic (sc), and diamond). The curve with the lowest minimum is the ground state of the crystal if stable. (The crystal structure is enforced in these calculations, so the phase may not be stable.) Graphs are generated for each species supported by the model.
This bar chart plot shows the mono-atomic face-centered diamond lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.
This bar chart plot shows the mono-atomic face-centered cubic (fcc) elastic constants predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.
This bar chart plot shows the mono-atomic face-centered cubic (fcc) lattice constant predicted by the current model (shown in red) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.
This bar chart plot shows the intrinsic and extrinsic stacking fault energies as well as the unstable stacking and unstable twinning energies for face-centered cubic (fcc) predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.
(No matching species)This bar chart plot shows the mono-atomic face-centered cubic (fcc) relaxed surface energies predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.
(No matching species)This bar chart plot shows the mono-atomic simple cubic (sc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.
Test | Test Results | Link to Test Results page | Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.
Measured in Millions of Whetstone Instructions (MWI) |
---|---|---|---|
Elastic constants for hcp Cr at zero temperature v004 | view | 8532 | |
Elastic constants for hcp Fe at zero temperature v004 | view | 9965 | |
Elastic constants for hcp W at zero temperature v004 | view | 9041 |
Test | Test Results | Link to Test Results page | Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.
Measured in Millions of Whetstone Instructions (MWI) |
---|---|---|---|
Equilibrium lattice constants for hcp Cr v005 | view | 815097 | |
Equilibrium lattice constants for hcp Fe v005 | view | 1173634 | |
Equilibrium lattice constants for hcp W v005 | view | 267200 |
Test | Test Results | Link to Test Results page | Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.
Measured in Millions of Whetstone Instructions (MWI) |
---|---|---|---|
Linear thermal expansion coefficient of bcc Fe at 293.15 K under a pressure of 0 MPa v001 | view | 11436131 | |
Linear thermal expansion coefficient of bcc W at 293.15 K under a pressure of 0 MPa v001 | view | 9385093 |
Test | Test Results | Link to Test Results page | Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.
Measured in Millions of Whetstone Instructions (MWI) |
---|---|---|---|
Broken-bond fit of high-symmetry surface energies in bcc Cr v004 | view | 160969 | |
Broken-bond fit of high-symmetry surface energies in bcc Fe v004 | view | 151884 | |
Broken-bond fit of high-symmetry surface energies in bcc W v004 | view | 155083 |
Test | Error Categories | Link to Error page |
---|---|---|
Classical and first strain gradient elastic constants for bcc iron | mismatch | view |
Classical and first strain gradient elastic constants for bcc iron | mismatch | view |
Classical and first strain gradient elastic constants for bcc tungsten | mismatch | view |
Test | Error Categories | Link to Error page |
---|---|---|
Linear thermal expansion coefficient of bcc Fe at room temperature under zero pressure | mismatch | view |
Linear thermal expansion coefficient of bcc W at room temperature under zero pressure | mismatch | view |
Test | Error Categories | Link to Error page |
---|---|---|
Linear thermal expansion coefficient of bcc Cr at 293.15 K under a pressure of 0 MPa v001 | other | view |
Test | Error Categories | Link to Error page |
---|---|---|
Monovacancy formation energy and relaxation volume for bcc Cr | mismatch | view |
Monovacancy formation energy and relaxation volume for bcc Fe | mismatch | view |
Monovacancy formation energy and relaxation volume for bcc W | mismatch | view |
Test | Error Categories | Link to Error page |
---|---|---|
Vacancy formation and migration energy for bcc Cr | mismatch | view |
Vacancy formation and migration energy for bcc Fe | mismatch | view |
Vacancy formation and migration energy for bcc W | mismatch | view |
Verification Check | Error Categories | Link to Error page |
---|---|---|
UnitConversion__VC_128739598203_000 | mismatch | view |
Sim_LAMMPS_EAM_BonnyCastinBullens_2013_FeCrW__SM_699257350704_000.txz | Tar+XZ | Linux and OS X archive |
Sim_LAMMPS_EAM_BonnyCastinBullens_2013_FeCrW__SM_699257350704_000.zip | Zip | Windows archive |