Jump to: Tests | Visualizers | Files | Wiki

Sim_LAMMPS_EIM_Zhou_2010_BrClCsFIKLiNaRb__SM_259779394709_000

Title
A single sentence description.
LAMMPS EIM potential for Br-Cl-Cs-F-I-K-Li-Na-Rb developed by Zhou (xzhou at sandia.gov) v000
Description Unpublished potential developed by Xiaowang Zhou (Sandia) and included with LAMMPS in Sept, 2010. Note that the original file referred to Iodine as "Id". For the KIM version, this has been changed to the more standard "I".

Note that the potential gives slightly different results depending on which elements are read from the parameter file. For example, one can simulate a CsCl crystal by reading in either all 9 elements, or only Cs and Cl. These two alternatives produce a difference in the lattice constant of CsCl at the 10th significant figure, and in the cohesive energy at the 12th significant figure.

For the KIM Simulator Model, all elements are read in for all tests.

More information from the LAMMPS user group (posted by Steve Plimpton, Tue, 31 Aug 2010 18:47:02 -0600):

Xiaowang Zhou (Sandia) has added his
embedded ion method (EIM) potential to LAMMPS.
It's the 5 Sept 10 patch.

This enables modeling of ionic compounds, with
a potential file for 9 elements: Li, Na, K, Rb, Cs, F, Cl, Br, and I.
Systems with any combination of these elements can be modeled.
Species
The supported atomic species.
Br, Cl, Cs, F, I, K, Li, Na, Rb
Content Origin LAMMPS package 22-Sep-2017
Contributor ronmiller
Maintainer ronmiller
Author Ronald E. Miller
Publication Year 2019
Source Citations
A citation to primary published work(s) that describe this KIM Item.

Zhou X (2010). doi:

Item Citation Click here to download a citation in BibTeX format.
Short KIM ID
The unique KIM identifier code.
SM_259779394709_000
Extended KIM ID
The long form of the KIM ID including a human readable prefix (100 characters max), two underscores, and the Short KIM ID. Extended KIM IDs can only contain alpha-numeric characters (letters and digits) and underscores and must begin with a letter.
Sim_LAMMPS_EIM_Zhou_2010_BrClCsFIKLiNaRb__SM_259779394709_000
DOI 10.25950/b2223d98
https://doi.org/10.25950/b2223d98
https://search.datacite.org/works/10.25950/b2223d98
KIM Item TypeSimulator Model
Simulator Name
The name of the simulator as defined in kimspec.edn.
LAMMPS
Potential Type eim

Verification Check Dashboard

(Click here to learn more about Verification Checks)

Grade Name Category Brief Description Full Results Aux File(s)
P vc-species-supported-as-stated mandatory
The model supports all species it claims to support; see full description.
Results Files
P vc-periodicity-support mandatory
Periodic boundary conditions are handled correctly; see full description.
Results Files
P vc-permutation-symmetry mandatory
Total energy and forces are unchanged when swapping atoms of the same species; see full description.
Results Files
B vc-forces-numerical-derivative consistency
Forces computed by the model agree with numerical derivatives of the energy; see full description.
Results Files
F vc-dimer-continuity-c1 informational
The energy versus separation relation of a pair of atoms is C1 continuous (i.e. the function and its first derivative are continuous); see full description.
Results Files
P vc-objectivity informational
Total energy is unchanged and forces transform correctly under rigid-body translation and rotation; see full description.
Results Files
P vc-inversion-symmetry informational
Total energy is unchanged and forces change sign when inverting a configuration through the origin; see full description.
Results Files
F vc-memory-leak informational
The model code does not have memory leaks (i.e. it releases all allocated memory at the end); see full description.
Results Files
N/A vc-thread-safe mandatory
The model returns the same energy and forces when computed in serial and when using parallel threads for a set of configurations. Note that this is not a guarantee of thread safety; see full description.
Results Files

Visualizers (in-page)


BCC Lattice Constant

This bar chart plot shows the mono-atomic body-centered cubic (bcc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Br
Species: Cl
Species: Cs
Species: F
Species: I
Species: K

Click on any thumbnail to get a full size image.



Cohesive Energy Graph

This graph shows the cohesive energy versus volume-per-atom for the current mode for four mono-atomic cubic phases (body-centered cubic (bcc), face-centered cubic (fcc), simple cubic (sc), and diamond). The curve with the lowest minimum is the ground state of the crystal if stable. (The crystal structure is enforced in these calculations, so the phase may not be stable.) Graphs are generated for each species supported by the model.

Species: Br
Species: Cl
Species: Cs
Species: F
Species: I
Species: K

Click on any thumbnail to get a full size image.



Diamond Lattice Constant

This bar chart plot shows the mono-atomic face-centered diamond lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Br
Species: Cl
Species: Cs
Species: F
Species: I
Species: K

Click on any thumbnail to get a full size image.



FCC Lattice Constant

This bar chart plot shows the mono-atomic face-centered cubic (fcc) lattice constant predicted by the current model (shown in red) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Br
Species: Cl
Species: Cs
Species: F
Species: I
Species: K

Click on any thumbnail to get a full size image.



SC Lattice Constant

This bar chart plot shows the mono-atomic simple cubic (sc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Br
Species: Cl
Species: Cs
Species: F
Species: I
Species: K

Click on any thumbnail to get a full size image.



Cubic Crystal Basic Properties Table

Species: Br

Species: Cl

Species: Cs

Species: F

Species: I

Species: K

Species: Li

Species: Na

Species: Rb



Tests

CohesiveEnergyVsLatticeConstant__TD_554653289799_002
This Test Driver uses LAMMPS to compute the cohesive energy of a given monoatomic cubic lattice (fcc, bcc, sc, or diamond) at a variety of lattice spacings. The lattice spacings range from a_min (=a_min_frac*a_0) to a_max (=a_max_frac*a_0) where a_0, a_min_frac, and a_max_frac are read from stdin (a_0 is typically approximately equal to the equilibrium lattice constant). The precise scaling and number of lattice spacings sampled between a_min and a_0 (a_0 and a_max) is specified by two additional parameters passed from stdin: N_lower and samplespacing_lower (N_upper and samplespacing_upper). Please see README.txt for further details.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
CohesiveEnergyVsLatticeConstant_bcc_Br__TE_859364101283_002 view 11583
CohesiveEnergyVsLatticeConstant_bcc_Cl__TE_875102584016_002 view 12962
CohesiveEnergyVsLatticeConstant_bcc_Cs__TE_577627611509_002 view 13829
CohesiveEnergyVsLatticeConstant_bcc_F__TE_420879659079_002 view 12930
CohesiveEnergyVsLatticeConstant_bcc_I__TE_505022194128_002 view 14567
CohesiveEnergyVsLatticeConstant_bcc_K__TE_948424030869_002 view 15305
CohesiveEnergyVsLatticeConstant_bcc_Li__TE_600015950328_002 view 16171
CohesiveEnergyVsLatticeConstant_bcc_Na__TE_027679635977_002 view 16075
CohesiveEnergyVsLatticeConstant_bcc_Rb__TE_200359191153_002 view 16075
CohesiveEnergyVsLatticeConstant_diamond_Br__TE_095504984244_002 view 10973
CohesiveEnergyVsLatticeConstant_diamond_Cl__TE_669854574765_002 view 11390
CohesiveEnergyVsLatticeConstant_diamond_Cs__TE_775907885499_002 view 11390
CohesiveEnergyVsLatticeConstant_diamond_F__TE_956675435037_002 view 11326
CohesiveEnergyVsLatticeConstant_diamond_I__TE_941440653708_002 view 11069
CohesiveEnergyVsLatticeConstant_diamond_K__TE_918512590897_002 view 11486
CohesiveEnergyVsLatticeConstant_diamond_Li__TE_485686046670_002 view 11037
CohesiveEnergyVsLatticeConstant_diamond_Na__TE_420812218068_002 view 11326
CohesiveEnergyVsLatticeConstant_diamond_Rb__TE_626359036568_002 view 14182
CohesiveEnergyVsLatticeConstant_fcc_Br__TE_828393350449_002 view 15818
CohesiveEnergyVsLatticeConstant_fcc_Cl__TE_000118480160_002 view 16235
CohesiveEnergyVsLatticeConstant_fcc_Cs__TE_738977471521_002 view 15946
CohesiveEnergyVsLatticeConstant_fcc_F__TE_015378820111_002 view 14663
CohesiveEnergyVsLatticeConstant_fcc_I__TE_932122895595_002 view 16684
CohesiveEnergyVsLatticeConstant_fcc_K__TE_505710248958_002 view 16139
CohesiveEnergyVsLatticeConstant_fcc_Li__TE_008689272148_002 view 15337
CohesiveEnergyVsLatticeConstant_fcc_Na__TE_010226493400_002 view 15946
CohesiveEnergyVsLatticeConstant_fcc_Rb__TE_535077012934_002 view 14855
CohesiveEnergyVsLatticeConstant_sc_Br__TE_204686755455_002 view 15946
CohesiveEnergyVsLatticeConstant_sc_Cl__TE_929952737557_002 view 16043
CohesiveEnergyVsLatticeConstant_sc_Cs__TE_291454088501_002 view 16107
CohesiveEnergyVsLatticeConstant_sc_F__TE_189040274544_002 view 15240
CohesiveEnergyVsLatticeConstant_sc_I__TE_232821636613_002 view 16492
CohesiveEnergyVsLatticeConstant_sc_K__TE_143679626742_002 view 14727
CohesiveEnergyVsLatticeConstant_sc_Li__TE_801257231236_002 view 15112
CohesiveEnergyVsLatticeConstant_sc_Na__TE_048982197612_002 view 13700
CohesiveEnergyVsLatticeConstant_sc_Rb__TE_739095240283_002 view 14855
ElasticConstantsCubic__TD_011862047401_005
Computes the cubic elastic constants for some common crystal types (fcc, bcc, sc, diamond) by calculating the hessian of the energy density with respect to strain. An estimate of the error associated with the numerical differentiation performed is reported.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
ElasticConstantsCubic_bcc_Br__TE_481234687340_005 view 11904
ElasticConstantsCubic_bcc_Cl__TE_757495655517_005 view 12609
ElasticConstantsCubic_bcc_Cs__TE_579385355842_005 view 10781
ElasticConstantsCubic_bcc_F__TE_078218235461_005 view 13444
ElasticConstantsCubic_bcc_I__TE_692538709468_005 view 12738
ElasticConstantsCubic_bcc_K__TE_398800873164_005 view 12609
ElasticConstantsCubic_bcc_Li__TE_287233376435_005 view 11839
ElasticConstantsCubic_bcc_Na__TE_470376128758_005 view 12224
ElasticConstantsCubic_bcc_Rb__TE_948036772883_005 view 12000
ElasticConstantsCubic_diamond_Br__TE_064188268873_000 view 36834
ElasticConstantsCubic_diamond_Cl__TE_062189297002_000 view 35967
ElasticConstantsCubic_diamond_Cs__TE_012662934866_000 view 36545
ElasticConstantsCubic_diamond_F__TE_848126345870_000 view 31668
ElasticConstantsCubic_diamond_I__TE_609768702885_000 view 39047
ElasticConstantsCubic_diamond_K__TE_071926154848_000 view 30866
ElasticConstantsCubic_diamond_Li__TE_996808638026_000 view 36801
ElasticConstantsCubic_diamond_Na__TE_648385095060_000 view 34844
ElasticConstantsCubic_diamond_Rb__TE_198436199464_000 view 33015
ElasticConstantsCubic_fcc_Br__TE_620132153671_005 view 14695
ElasticConstantsCubic_fcc_Cl__TE_599417877194_005 view 14053
ElasticConstantsCubic_fcc_Cs__TE_285737330496_005 view 13219
ElasticConstantsCubic_fcc_F__TE_971153157533_005 view 13957
ElasticConstantsCubic_fcc_I__TE_036503559424_005 view 14502
ElasticConstantsCubic_fcc_K__TE_577629158683_005 view 12930
ElasticConstantsCubic_fcc_Li__TE_286461032303_005 view 12577
ElasticConstantsCubic_fcc_Na__TE_857617182965_005 view 13251
ElasticConstantsCubic_fcc_Rb__TE_197224095763_005 view 14117
ElasticConstantsCubic_sc_Br__TE_849427400581_005 view 11262
ElasticConstantsCubic_sc_Cl__TE_619030766296_005 view 12738
ElasticConstantsCubic_sc_Cs__TE_174709371149_005 view 11326
ElasticConstantsCubic_sc_F__TE_747098354436_005 view 13091
ElasticConstantsCubic_sc_I__TE_847841099173_005 view 12866
ElasticConstantsCubic_sc_K__TE_548602594961_005 view 12321
ElasticConstantsCubic_sc_Li__TE_589428389686_005 view 11615
ElasticConstantsCubic_sc_Na__TE_133927955579_005 view 11551
ElasticConstantsCubic_sc_Rb__TE_990069293038_005 view 11743
ElasticConstantsHexagonal__TD_612503193866_003
Computes the elastic constants for hcp crystals by calculating the hessian of the energy density with respect to strain. An estimate of the error associated with the numerical differentiation performed is reported.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
ElasticConstantsHexagonal_hcp_Br__TE_305256026023_003 view 14607
ElasticConstantsHexagonal_hcp_Cl__TE_894429379290_003 view 15671
ElasticConstantsHexagonal_hcp_Cs__TE_713626219187_003 view 13865
ElasticConstantsHexagonal_hcp_F__TE_796246072648_003 view 13704
ElasticConstantsHexagonal_hcp_K__TE_711882645588_003 view 14349
ElasticConstantsHexagonal_hcp_Li__TE_572632976877_003 view 13736
ElasticConstantsHexagonal_hcp_Na__TE_969867858524_003 view 12382
ElasticConstantsHexagonal_hcp_Rb__TE_755121474474_003 view 12930
LatticeConstantCubicEnergy__TD_475411767977_006
Equilibrium lattice constant and cohesive energy of a cubic lattice at zero temperature and pressure.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
LatticeConstantCubicEnergy_bcc_Br__TE_813574101302_006 view 5487
LatticeConstantCubicEnergy_bcc_Cl__TE_271634182494_006 view 5615
LatticeConstantCubicEnergy_bcc_Cs__TE_629135245492_006 view 5454
LatticeConstantCubicEnergy_bcc_F__TE_308705954920_006 view 6128
LatticeConstantCubicEnergy_bcc_I__TE_245473127273_006 view 5198
LatticeConstantCubicEnergy_bcc_K__TE_917432637078_006 view 5872
LatticeConstantCubicEnergy_bcc_Li__TE_577737826534_006 view 5583
LatticeConstantCubicEnergy_bcc_Na__TE_750720776577_006 view 6930
LatticeConstantCubicEnergy_bcc_Rb__TE_755741674388_006 view 5839
LatticeConstantCubicEnergy_diamond_Br__TE_639215381427_006 view 9626
LatticeConstantCubicEnergy_diamond_Cl__TE_785863539731_006 view 14246
LatticeConstantCubicEnergy_diamond_Cs__TE_597152627867_006 view 16331
LatticeConstantCubicEnergy_diamond_F__TE_856748300473_006 view 9850
LatticeConstantCubicEnergy_diamond_I__TE_994214177875_006 view 10107
LatticeConstantCubicEnergy_diamond_K__TE_955730981621_006 view 9626
LatticeConstantCubicEnergy_diamond_Li__TE_713375734600_006 view 10363
LatticeConstantCubicEnergy_diamond_Na__TE_224316875199_006 view 9882
LatticeConstantCubicEnergy_diamond_Rb__TE_387599446393_006 view 9914
LatticeConstantCubicEnergy_fcc_Br__TE_574345888223_006 view 7027
LatticeConstantCubicEnergy_fcc_Cl__TE_678736369577_006 view 7059
LatticeConstantCubicEnergy_fcc_Cs__TE_463571146589_006 view 6545
LatticeConstantCubicEnergy_fcc_F__TE_573382890918_006 view 9080
LatticeConstantCubicEnergy_fcc_I__TE_827132363570_006 view 7572
LatticeConstantCubicEnergy_fcc_K__TE_110148414204_006 view 7700
LatticeConstantCubicEnergy_fcc_Li__TE_776729184295_006 view 6224
LatticeConstantCubicEnergy_fcc_Na__TE_577795793955_006 view 6770
LatticeConstantCubicEnergy_fcc_Rb__TE_089051686461_006 view 6160
LatticeConstantCubicEnergy_sc_Br__TE_381199571569_006 view 5904
LatticeConstantCubicEnergy_sc_Cl__TE_161643870908_006 view 5487
LatticeConstantCubicEnergy_sc_Cs__TE_880839356614_006 view 5358
LatticeConstantCubicEnergy_sc_F__TE_018079481847_006 view 5936
LatticeConstantCubicEnergy_sc_I__TE_438902088953_006 view 5551
LatticeConstantCubicEnergy_sc_K__TE_874067062068_006 view 5647
LatticeConstantCubicEnergy_sc_Li__TE_263933162383_006 view 5422
LatticeConstantCubicEnergy_sc_Na__TE_276359485361_006 view 5390
LatticeConstantCubicEnergy_sc_Rb__TE_983120335793_006 view 5551
LatticeConstantHexagonalEnergy__TD_942334626465_004
Calculates lattice constant of hexagonal bulk structures at zero temperature and pressure by using simplex minimization to minimize the potential energy.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
LatticeConstantHexagonalEnergy_hcp_Br__TE_938515319592_004 view 139584
LatticeConstantHexagonalEnergy_hcp_Cl__TE_534169925214_004 view 144098
LatticeConstantHexagonalEnergy_hcp_Cs__TE_114252727157_004 view 145162
LatticeConstantHexagonalEnergy_hcp_F__TE_530508786616_004 view 144356
LatticeConstantHexagonalEnergy_hcp_K__TE_680989010054_004 view 147484
LatticeConstantHexagonalEnergy_hcp_Li__TE_343831449774_004 view 129234
LatticeConstantHexagonalEnergy_hcp_Na__TE_599435841760_004 view 140423
LatticeConstantHexagonalEnergy_hcp_Rb__TE_207074624962_004 view 144582
SurfaceEnergyCubicCrystalBrokenBondFit__TD_955413365818_003
Calculates the surface energy of several high symmetry surfaces and produces a broken-bond model fit. In latex form, the fit equations are given by:

E_{FCC} (\vec{n}) = p_1 (4 \left( |x+y| + |x-y| + |x+z| + |x-z| + |z+y| +|z-y|\right)) + p_2 (8 \left( |x| + |y| + |z|\right)) + p_3 (2 ( |x+ 2y + z| + |x+2y-z| + |x-2y + z| + |x-2y-z| + |2x+y+z| + |2x+y-z| +|2x-y+z| +|2x-y-z| +|x+y+2z| +|x+y-2z| +|x-y+2z| +|x-y-2z| ) + c

E_{BCC} (\vec{n}) = p_1 (6 \left( | x+y+z| + |x+y-z| + |-x+y-z| + |x-y+z| \right)) + p_2 (8 \left( |x| + |y| + |z|\right)) + p_3 (4 \left( |x+y| + |x-y| + |x+z| + |x-z| + |z+y| +|z-y|\right)) +c.

In Python, these two fits take the following form:

def BrokenBondFCC(params, index):

import numpy
x, y, z = index
x = x / numpy.sqrt(x**2.+y**2.+z**2.)
y = y / numpy.sqrt(x**2.+y**2.+z**2.)
z = z / numpy.sqrt(x**2.+y**2.+z**2.)

return params[0]*4* (abs(x+y) + abs(x-y) + abs(x+z) + abs(x-z) + abs(z+y) + abs(z-y)) + params[1]*8*(abs(x) + abs(y) + abs(z)) + params[2]*(abs(x+2*y+z) + abs(x+2*y-z) +abs(x-2*y+z) +abs(x-2*y-z) + abs(2*x+y+z) +abs(2*x+y-z) +abs(2*x-y+z) +abs(2*x-y-z) + abs(x+y+2*z) +abs(x+y-2*z) +abs(x-y+2*z) +abs(x-y-2*z))+params[3]

def BrokenBondBCC(params, x, y, z):


import numpy
x, y, z = index
x = x / numpy.sqrt(x**2.+y**2.+z**2.)
y = y / numpy.sqrt(x**2.+y**2.+z**2.)
z = z / numpy.sqrt(x**2.+y**2.+z**2.)

return params[0]*6*(abs(x+y+z) + abs(x-y-z) + abs(x-y+z) + abs(x+y-z)) + params[1]*8*(abs(x) + abs(y) + abs(z)) + params[2]*4* (abs(x+y) + abs(x-y) + abs(x+z) + abs(x-z) + abs(z+y) + abs(z-y)) + params[3]
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
SurfaceEnergyCubicCrystalBrokenBondFit_bcc_Cs__TE_771556685416_003 view 363555
SurfaceEnergyCubicCrystalBrokenBondFit_bcc_K__TE_493207163006_003 view 132992
SurfaceEnergyCubicCrystalBrokenBondFit_bcc_Li__TE_567666532279_003 view 188050
SurfaceEnergyCubicCrystalBrokenBondFit_bcc_Na__TE_655742555128_003 view 146917
SurfaceEnergyCubicCrystalBrokenBondFit_bcc_Rb__TE_884406131399_003 view 130233


Errors

LatticeConstantHexagonalEnergy__TD_942334626465_004
Test Error Categories Link to Error page
LatticeConstantHexagonalEnergy_hcp_I__TE_114031788313_004 view

LinearThermalExpansionCoeffCubic__TD_522633393614_000

VacancyFormationEnergyRelaxationVolume__TD_647413317626_000

VacancyFormationMigration__TD_554849987965_000



Wiki

Wiki is ready to accept new content.

Login to edit Wiki content