Jump to: Tests | Visualizers | Files | Wiki

Sim_LAMMPS_MEAM_HennigLenoskyTrinkle_2008_Ti__SM_318953488749_000

Interatomic potential for Titanium (Ti).
Use this Potential

Title
A single sentence description.
LAMMPS MEAM potential for Ti developed by Hennig et al. (2008) v000
Citations

This panel presents the list of papers that cite the interatomic potential whose page you are on (by its primary sources given below in "How to Cite").

Articles marked by the green star have been determined to have used the potential in computations (as opposed to only citing it as background information) by a machine learning (ML) algorithm developed by the KIM Team that analyzes the full text of the papers. Articles that do not use it are marked with a null symbol, and in cases where no information is available a question mark is shown.

The full text of the articles used to train the ML algorithm is provided by the Allen Institute for AI through the Semantic Scholar project.

The word cloud to the right is built from the abstracts of the primary sources and using papers to give a sense of the types of physical phenomena to which this interatomic potential is applied.

IMPORTANT NOTE: Usage can only be determined for articles for which Semantic Scholar can provide OpenKIM with the full text. Where this is not the case, we ask the community for help in determining usage. If you know whether an article did or did not use a potential, let us know by clicking the cloud icon by the article and completing a one question form.

The word cloud indicates applications of this Potential. The bar chart shows citations per year of this Potential.

Help us to determine which of the papers that cite this potential actually used it to perform calculations. If you know, click the  .
Description A description of the martensitic transformations between the alpha, beta, and omega phases of titanium that includes nucleation and growth requires an accurate classical potential. Optimization of the parameters of a modified embedded atom potential to a database of density-functional calculations yields an accurate and transferable potential as verified by comparison to experimental and density-functional data for phonons, surface and stacking fault energies, and energy barriers for homogeneous martensitic transformations. Molecular-dynamics simulations map out the pressure-temperature phase diagram of titanium. For this potential the martensitic phase transformation between a and 8 appears at ambient pressure and 1200 K, between alpha and omega at ambient conditions, between beta and omega at 1200 K and pressures above 8 GPa, and the triple point occurs at 8 GPa and 1200 K. Molecular-dynamics explorations of the kinetics of the martensitic alpha-omega transformation show a fast moving interface with a low interfacial energy of 30 meV/angstrom(2). The potential is applicable to the study of defects and phase transformations of Ti.
Species
The supported atomic species.
Ti
Disclaimer
A statement of applicability provided by the contributor, informing users of the intended use of this KIM Item.
None
Content Origin LAMMPS package 22-Sep-2017
Contributor Ronald E. Miller
Maintainer Ronald E. Miller
Published on KIM 2019
How to Cite

This Simulator Model originally published in [1] is archived in OpenKIM [2-4].

[1] Hennig RG, Lenosky TJ, Trinkle DR, Rudin SP, Wilkins JW. Classical potential describes martensitic phase transformations between the\upalpha, \upbeta, and\upomegatitanium phases. Physical Review B [Internet]. 2008Aug;78(5). Available from: https://doi.org/10.1103/physrevb.78.054121 doi:10.1103/physrevb.78.054121 — (Primary Source) A primary source is a reference directly related to the item documenting its development, as opposed to other sources that are provided as background information.

[2] LAMMPS MEAM potential for Ti developed by Hennig et al. (2008) v000. OpenKIM; 2019. doi:10.25950/8ee843a4

[3] Tadmor EB, Elliott RS, Sethna JP, Miller RE, Becker CA. The potential of atomistic simulations and the Knowledgebase of Interatomic Models. JOM. 2011;63(7):17. doi:10.1007/s11837-011-0102-6

[4] Elliott RS, Tadmor EB. Knowledgebase of Interatomic Models (KIM) Application Programming Interface (API). OpenKIM; 2011. doi:10.25950/ff8f563a

Click here to download the above citation in BibTeX format.
Funding Not available
Short KIM ID
The unique KIM identifier code.
SM_318953488749_000
Extended KIM ID
The long form of the KIM ID including a human readable prefix (100 characters max), two underscores, and the Short KIM ID. Extended KIM IDs can only contain alpha-numeric characters (letters and digits) and underscores and must begin with a letter.
Sim_LAMMPS_MEAM_HennigLenoskyTrinkle_2008_Ti__SM_318953488749_000
DOI 10.25950/8ee843a4
https://doi.org/10.25950/8ee843a4
https://search.datacite.org/works/10.25950/8ee843a4
KIM Item TypeSimulator Model
KIM API Version2.1
Simulator Name
The name of the simulator as defined in kimspec.edn.
LAMMPS
Potential Type meam
Simulator Potential meam/spline

(Click here to learn more about Verification Checks)

Grade Name Category Brief Description Full Results Aux File(s)
P vc-species-supported-as-stated mandatory
The model supports all species it claims to support; see full description.
Results Files
P vc-periodicity-support mandatory
Periodic boundary conditions are handled correctly; see full description.
Results Files
P vc-permutation-symmetry mandatory
Total energy and forces are unchanged when swapping atoms of the same species; see full description.
Results Files
A vc-forces-numerical-derivative consistency
Forces computed by the model agree with numerical derivatives of the energy; see full description.
Results Files
P vc-dimer-continuity-c1 informational
The energy versus separation relation of a pair of atoms is C1 continuous (i.e. the function and its first derivative are continuous); see full description.
Results Files
P vc-objectivity informational
Total energy is unchanged and forces transform correctly under rigid-body translation and rotation; see full description.
Results Files
P vc-inversion-symmetry informational
Total energy is unchanged and forces change sign when inverting a configuration through the origin; see full description.
Results Files
P vc-memory-leak informational
The model code does not have memory leaks (i.e. it releases all allocated memory at the end); see full description.
Results Files
N/A vc-thread-safe mandatory
The model returns the same energy and forces when computed in serial and when using parallel threads for a set of configurations. Note that this is not a guarantee of thread safety; see full description.
Results Files


BCC Lattice Constant

This bar chart plot shows the mono-atomic body-centered cubic (bcc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Ti


Cohesive Energy Graph

This graph shows the cohesive energy versus volume-per-atom for the current mode for four mono-atomic cubic phases (body-centered cubic (bcc), face-centered cubic (fcc), simple cubic (sc), and diamond). The curve with the lowest minimum is the ground state of the crystal if stable. (The crystal structure is enforced in these calculations, so the phase may not be stable.) Graphs are generated for each species supported by the model.

Species: Ti


Diamond Lattice Constant

This bar chart plot shows the mono-atomic face-centered diamond lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Ti


FCC Elastic Constants

This bar chart plot shows the mono-atomic face-centered cubic (fcc) elastic constants predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Ti


FCC Lattice Constant

This bar chart plot shows the mono-atomic face-centered cubic (fcc) lattice constant predicted by the current model (shown in red) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Ti


FCC Stacking Fault Energies

This bar chart plot shows the intrinsic and extrinsic stacking fault energies as well as the unstable stacking and unstable twinning energies for face-centered cubic (fcc) predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

FCC Surface Energies

This bar chart plot shows the mono-atomic face-centered cubic (fcc) relaxed surface energies predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

SC Lattice Constant

This bar chart plot shows the mono-atomic simple cubic (sc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Ti


Cubic Crystal Basic Properties Table

Species: Ti





Cohesive energy versus lattice constant curve for monoatomic cubic lattices v003

Creators: Daniel S. Karls
Contributor: karls
Publication Year: 2019
DOI: https://doi.org/10.25950/64cb38c5

This Test Driver uses LAMMPS to compute the cohesive energy of a given monoatomic cubic lattice (fcc, bcc, sc, or diamond) at a variety of lattice spacings. The lattice spacings range from a_min (=a_min_frac*a_0) to a_max (=a_max_frac*a_0) where a_0, a_min_frac, and a_max_frac are read from stdin (a_0 is typically approximately equal to the equilibrium lattice constant). The precise scaling and number of lattice spacings sampled between a_min and a_0 (a_0 and a_max) is specified by two additional parameters passed from stdin: N_lower and samplespacing_lower (N_upper and samplespacing_upper). Please see README.txt for further details.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Cohesive energy versus lattice constant curve for bcc Ti v003 view 1727
Cohesive energy versus lattice constant curve for diamond Ti v003 view 1919
Cohesive energy versus lattice constant curve for fcc Ti v003 view 1887
Cohesive energy versus lattice constant curve for sc Ti v003 view 1951


Elastic constants for cubic crystals at zero temperature and pressure v006

Creators: Junhao Li and Ellad Tadmor
Contributor: tadmor
Publication Year: 2019
DOI: https://doi.org/10.25950/5853fb8f

Computes the cubic elastic constants for some common crystal types (fcc, bcc, sc, diamond) by calculating the hessian of the energy density with respect to strain. An estimate of the error associated with the numerical differentiation performed is reported.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Elastic constants for bcc Ti at zero temperature v006 view 3167
Elastic constants for diamond Ti at zero temperature v001 view 41074
Elastic constants for fcc Ti at zero temperature v006 view 10077
Elastic constants for sc Ti at zero temperature v006 view 2399


Elastic constants for hexagonal crystals at zero temperature v003

Creators: Junhao Li
Contributor: jl2922
Publication Year: 2018
DOI: https://doi.org/10.25950/2e4b93d9

Computes the elastic constants for hcp crystals by calculating the hessian of the energy density with respect to strain. An estimate of the error associated with the numerical differentiation performed is reported.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Elastic constants for hcp Ti at zero temperature view 2128


Equilibrium lattice constant and cohesive energy of a cubic lattice at zero temperature and pressure v007

Creators: Daniel S. Karls and Junhao Li
Contributor: karls
Publication Year: 2019
DOI: https://doi.org/10.25950/2765e3bf

Equilibrium lattice constant and cohesive energy of a cubic lattice at zero temperature and pressure.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Equilibrium zero-temperature lattice constant for bcc Ti v007 view 5694
Equilibrium zero-temperature lattice constant for diamond Ti v007 view 8925
Equilibrium zero-temperature lattice constant for fcc Ti v007 view 6590
Equilibrium zero-temperature lattice constant for sc Ti v007 view 5470


Equilibrium lattice constants for hexagonal bulk structures at zero temperature and pressure v004

Creators: Junhao Li
Contributor: jl2922
Publication Year: 2018
DOI: https://doi.org/10.25950/25bcc28b

Calculates lattice constant of hexagonal bulk structures at zero temperature and pressure by using simplex minimization to minimize the potential energy.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Equilibrium lattice constants for hcp Ti view 7964




Wiki is ready to accept new content.

Login to edit Wiki content