Jump to: Tests | Visualizers | Files | Wiki

Sim_LAMMPS_Polymorphic_NordAlbeErhart_2003_GaN__SM_333071728528_000

Title
A single sentence description.
LAMMPS BOP potential for the Ga-N system developed by Nord et al. (2003) and implemented using the polymorphic framework of Zhou et al. (2015) v000
Description An analytical bond-order potential for GaN is presented that describes a wide range of structural properties of GaN as well as bonding and structure of the pure constituents. For the systematic fit of the potential parameters reference data are taken from total-energy calculations within the density functional theory if not available from experiments. Although long-range interactions are not explicitly included in the potential, the present model provides a good fit to different structural geometries including defects and high-pressure phases of GaN.
Species
The supported atomic species.
Ga, N
Disclaimer
A statement of applicability provided by the contributor, informing users of the intended use of this KIM Item.
None
Content Origin LAMMPS package 22-Sep-2017
Contributor ronmiller
Maintainer ronmiller
Author Ronald E. Miller
Publication Year 2019
Item Citation

This Simulator Model originally published in [1] is archived in OpenKIM [2-4].

[1] Nord J, Albe K, Erhart P, Nordlund K. Modelling of compound semiconductors: analytical bond-order potential for gallium, nitrogen and gallium nitride. Journal of Physics: Condensed Matter [Internet]. 2003Aug;15(32):5649–62. Available from: https://doi.org/10.1088/0953-8984/15/32/324 doi:10.1088/0953-8984/15/32/324

[2] Miller RE. LAMMPS BOP potential for the Ga-N system developed by Nord et al. (2003) and implemented using the polymorphic framework of Zhou et al. (2015) v000. OpenKIM; 2019. doi:10.25950/d947b5f4

[3] Tadmor EB, Elliott RS, Sethna JP, Miller RE, Becker CA. The potential of atomistic simulations and the Knowledgebase of Interatomic Models. JOM. 2011;63(7):17. doi:10.1007/s11837-011-0102-6

[4] Elliott RS, Tadmor EB. Knowledgebase of Interatomic Models (KIM) Application Programming Interface (API). OpenKIM; 2011. doi:10.25950/ff8f563a

Click here to download the above citation in BibTeX format.
Short KIM ID
The unique KIM identifier code.
SM_333071728528_000
Extended KIM ID
The long form of the KIM ID including a human readable prefix (100 characters max), two underscores, and the Short KIM ID. Extended KIM IDs can only contain alpha-numeric characters (letters and digits) and underscores and must begin with a letter.
Sim_LAMMPS_Polymorphic_NordAlbeErhart_2003_GaN__SM_333071728528_000
DOI 10.25950/d947b5f4
https://doi.org/10.25950/d947b5f4
https://search.datacite.org/works/10.25950/d947b5f4
KIM Item TypeSimulator Model
KIM API Version2.1
Simulator Name
The name of the simulator as defined in kimspec.edn.
LAMMPS
Potential Type polymorphic
Simulator Potential polymorphic

Verification Check Dashboard

(Click here to learn more about Verification Checks)

Grade Name Category Brief Description Full Results Aux File(s)
P vc-species-supported-as-stated mandatory
The model supports all species it claims to support; see full description.
Results Files
P vc-periodicity-support mandatory
Periodic boundary conditions are handled correctly; see full description.
Results Files
P vc-permutation-symmetry mandatory
Total energy and forces are unchanged when swapping atoms of the same species; see full description.
Results Files
B vc-forces-numerical-derivative consistency
Forces computed by the model agree with numerical derivatives of the energy; see full description.
Results Files
F vc-dimer-continuity-c1 informational
The energy versus separation relation of a pair of atoms is C1 continuous (i.e. the function and its first derivative are continuous); see full description.
Results Files
P vc-objectivity informational
Total energy is unchanged and forces transform correctly under rigid-body translation and rotation; see full description.
Results Files
P vc-inversion-symmetry informational
Total energy is unchanged and forces change sign when inverting a configuration through the origin; see full description.
Results Files
F vc-memory-leak informational
The model code does not have memory leaks (i.e. it releases all allocated memory at the end); see full description.
Results Files
N/A vc-thread-safe mandatory
The model returns the same energy and forces when computed in serial and when using parallel threads for a set of configurations. Note that this is not a guarantee of thread safety; see full description.
Results Files

Visualizers (in-page)


BCC Lattice Constant

This bar chart plot shows the mono-atomic body-centered cubic (bcc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: N
Species: Ga


Cohesive Energy Graph

This graph shows the cohesive energy versus volume-per-atom for the current mode for four mono-atomic cubic phases (body-centered cubic (bcc), face-centered cubic (fcc), simple cubic (sc), and diamond). The curve with the lowest minimum is the ground state of the crystal if stable. (The crystal structure is enforced in these calculations, so the phase may not be stable.) Graphs are generated for each species supported by the model.

(No matching species)

Diamond Lattice Constant

This bar chart plot shows the mono-atomic face-centered diamond lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Ga
Species: N


FCC Elastic Constants

This bar chart plot shows the mono-atomic face-centered cubic (fcc) elastic constants predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: N
Species: Ga


FCC Lattice Constant

This bar chart plot shows the mono-atomic face-centered cubic (fcc) lattice constant predicted by the current model (shown in red) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Ga
Species: N


FCC Stacking Fault Energies

This bar chart plot shows the intrinsic and extrinsic stacking fault energies as well as the unstable stacking and unstable twinning energies for face-centered cubic (fcc) predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

FCC Surface Energies

This bar chart plot shows the mono-atomic face-centered cubic (fcc) relaxed surface energies predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

SC Lattice Constant

This bar chart plot shows the mono-atomic simple cubic (sc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Ga
Species: N


Cubic Crystal Basic Properties Table

Species: Ga

Species: N



Tests

ElasticConstantsCubic__TD_011862047401_005
Computes the cubic elastic constants for some common crystal types (fcc, bcc, sc, diamond) by calculating the hessian of the energy density with respect to strain. An estimate of the error associated with the numerical differentiation performed is reported.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
ElasticConstantsCubic_bcc_N__TE_793923119557_005 view 3946
ElasticConstantsCubic_diamond_N__TE_553201632714_000 view 16524
ElasticConstantsCubic_fcc_N__TE_320719669104_005 view 4652
ElasticConstantsCubic_sc_N__TE_205493877097_005 view 3690
ElasticConstantsCubic__TD_011862047401_006
Computes the cubic elastic constants for some common crystal types (fcc, bcc, sc, diamond) by calculating the hessian of the energy density with respect to strain. An estimate of the error associated with the numerical differentiation performed is reported.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
ElasticConstantsCubic_bcc_Ga__TE_243966504616_006 view 9565
ElasticConstantsCubic_diamond_Ga__TE_328706405469_001 view 7581
ElasticConstantsCubic_fcc_Ga__TE_969656214004_006 view 2911
ElasticConstantsCubic_sc_Ga__TE_059461528966_006 view 9245
ElasticConstantsHexagonal__TD_612503193866_003
Computes the elastic constants for hcp crystals by calculating the hessian of the energy density with respect to strain. An estimate of the error associated with the numerical differentiation performed is reported.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
ElasticConstantsHexagonal_hcp_Ga__TE_439583872785_003 view 2031
ElasticConstantsHexagonal_hcp_N__TE_854418572853_003 view 1612
LatticeConstantCubicEnergy__TD_475411767977_007
Equilibrium lattice constant and cohesive energy of a cubic lattice at zero temperature and pressure.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
LatticeConstantCubicEnergy_bcc_Ga__TE_342334855555_007 view 4990
LatticeConstantCubicEnergy_bcc_N__TE_613577614022_007 view 6782
LatticeConstantCubicEnergy_diamond_Ga__TE_307469855545_007 view 8701
LatticeConstantCubicEnergy_diamond_N__TE_248372489650_007 view 6750
LatticeConstantCubicEnergy_fcc_Ga__TE_138022569023_007 view 7773
LatticeConstantCubicEnergy_fcc_N__TE_022839468009_007 view 5438
LatticeConstantCubicEnergy_sc_Ga__TE_069447814069_007 view 5694
LatticeConstantCubicEnergy_sc_N__TE_268219140650_007 view 7262
LatticeConstantHexagonalEnergy__TD_942334626465_004
Calculates lattice constant of hexagonal bulk structures at zero temperature and pressure by using simplex minimization to minimize the potential energy.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
LatticeConstantHexagonalEnergy_hcp_Ga__TE_261082961909_004 view 8512
LatticeConstantHexagonalEnergy_hcp_N__TE_155716044292_004 view 10125




Wiki

Wiki is ready to accept new content.

Login to edit Wiki content