Jump to: Tests | Visualizers | Files | Wiki

Sim_LAMMPS_Polymorphic_ZhouJonesChu_2017_GaInN__SM_887684855692_000

Interatomic potential for Gallium (Ga), Indium (In), Nitrogen (N).
Use this Potential

Title
A single sentence description.
LAMMPS Stillinger-Weber potential for the In-Ga-N system developed by Zhou, Jones and Chu (2017) and implemented using the polymorphic framework of Zhou et al. (2015) v000
Description This is a modified Stillinger-Weber potential for InGaN utilizing the polymorphic potential style recently implemented in LAMMPS. It overcomes the following two drawbacks of the standard Stillinger-Weber potential when applied to an A-B binary system: 1) the overestimation of the elastic constants of elements A and B 2) the prescription equal energy for zinc-blende and wurtzite crystals.
Species
The supported atomic species.
Ga, In, N
Disclaimer
A statement of applicability provided by the contributor, informing users of the intended use of this KIM Item.
None
Content Origin https://www.ctcms.nist.gov/potentials/entry/2017--Zhou-X-W-Jones-R-E-Chu-K--In-Ga-N/
Contributor I Nikiforov
Maintainer I Nikiforov
Developer Xiaowang Zhou
Reese E. Jones
Kevin Chu
Published on KIM 2022
How to Cite

This Simulator Model originally published in [1] is archived in OpenKIM [2-4].

[1] Zhou XW, Jones RE, Chu K. Polymorphic improvement of Stillinger-Weber potential for InGaN. Journal of Applied Physics [Internet]. 2017Dec;122(23). Available from: https://www.osti.gov/biblio/1421617 doi:10.1063/1.5001339 — (Primary Source) A primary source is a reference directly related to the item documenting its development, as opposed to other sources that are provided as background information.

[2] Zhou X, Jones RE, Chu K. LAMMPS Stillinger-Weber potential for the In-Ga-N system developed by Zhou, Jones and Chu (2017) and implemented using the polymorphic framework of Zhou et al. (2015) v000. OpenKIM; 2022. doi:10.25950/de69a78d

[3] Tadmor EB, Elliott RS, Sethna JP, Miller RE, Becker CA. The potential of atomistic simulations and the Knowledgebase of Interatomic Models. JOM. 2011;63(7):17. doi:10.1007/s11837-011-0102-6

[4] Elliott RS, Tadmor EB. Knowledgebase of Interatomic Models (KIM) Application Programming Interface (API). OpenKIM; 2011. doi:10.25950/ff8f563a

Click here to download the above citation in BibTeX format.
Citations

This panel presents information regarding the papers that have cited the interatomic potential (IP) whose page you are on.

The OpenKIM machine learning based Deep Citation framework is used to determine whether the citing article actually used the IP in computations (denoted by "USED") or only provides it as a background citation (denoted by "NOT USED"). For more details on Deep Citation and how to work with this panel, click the documentation link at the top of the panel.

The word cloud to the right is generated from the abstracts of IP principle source(s) (given below in "How to Cite") and the citing articles that were determined to have used the IP in order to provide users with a quick sense of the types of physical phenomena to which this IP is applied.

The bar chart shows the number of articles that cited the IP per year. Each bar is divided into green (articles that USED the IP) and blue (articles that did NOT USE the IP).

Users are encouraged to correct Deep Citation errors in determination by clicking the speech icon next to a citing article and providing updated information. This will be integrated into the next Deep Citation learning cycle, which occurs on a regular basis.

OpenKIM acknowledges the support of the Allen Institute for AI through the Semantic Scholar project for providing citation information and full text of articles when available, which are used to train the Deep Citation ML algorithm.

This panel provides information on past usage of this interatomic potential (IP) powered by the OpenKIM Deep Citation framework. The word cloud indicates typical applications of the potential. The bar chart shows citations per year of this IP (bars are divided into articles that used the IP (green) and those that did not (blue)). The complete list of articles that cited this IP is provided below along with the Deep Citation determination on usage. See the Deep Citation documentation for more information.

Help us to determine which of the papers that cite this potential actually used it to perform calculations. If you know, click the  .
Funding Award Number: 180899
Funder: Laboratory Directed Research and Development

Short KIM ID
The unique KIM identifier code.
SM_887684855692_000
Extended KIM ID
The long form of the KIM ID including a human readable prefix (100 characters max), two underscores, and the Short KIM ID. Extended KIM IDs can only contain alpha-numeric characters (letters and digits) and underscores and must begin with a letter.
Sim_LAMMPS_Polymorphic_ZhouJonesChu_2017_GaInN__SM_887684855692_000
DOI 10.25950/de69a78d
https://doi.org/10.25950/de69a78d
https://commons.datacite.org/doi.org/10.25950/de69a78d
KIM Item TypeSimulator Model
KIM API Version2.2
Simulator Name
The name of the simulator as defined in kimspec.edn.
LAMMPS
Potential Type polymorphic
Simulator Potential polymorphic
Run Compatibility portable-models

(Click here to learn more about Verification Checks)

Grade Name Category Brief Description Full Results Aux File(s)
P vc-species-supported-as-stated mandatory
The model supports all species it claims to support; see full description.
Results Files
P vc-periodicity-support mandatory
Periodic boundary conditions are handled correctly; see full description.
Results Files
P vc-permutation-symmetry mandatory
Total energy and forces are unchanged when swapping atoms of the same species; see full description.
Results Files
B vc-forces-numerical-derivative consistency
Forces computed by the model agree with numerical derivatives of the energy; see full description.
Results Files
F vc-dimer-continuity-c1 informational
The energy versus separation relation of a pair of atoms is C1 continuous (i.e. the function and its first derivative are continuous); see full description.
Results Files
P vc-objectivity informational
Total energy is unchanged and forces transform correctly under rigid-body translation and rotation; see full description.
Results Files
P vc-inversion-symmetry informational
Total energy is unchanged and forces change sign when inverting a configuration through the origin; see full description.
Results Files
F vc-memory-leak informational
The model code does not have memory leaks (i.e. it releases all allocated memory at the end); see full description.
Results Files
N/A vc-thread-safe mandatory
The model returns the same energy and forces when computed in serial and when using parallel threads for a set of configurations. Note that this is not a guarantee of thread safety; see full description.
Results Files


BCC Lattice Constant

This bar chart plot shows the mono-atomic body-centered cubic (bcc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: In
Species: Ga
Species: N


Cohesive Energy Graph

This graph shows the cohesive energy versus volume-per-atom for the current mode for four mono-atomic cubic phases (body-centered cubic (bcc), face-centered cubic (fcc), simple cubic (sc), and diamond). The curve with the lowest minimum is the ground state of the crystal if stable. (The crystal structure is enforced in these calculations, so the phase may not be stable.) Graphs are generated for each species supported by the model.

(No matching species)

Diamond Lattice Constant

This bar chart plot shows the mono-atomic face-centered diamond lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: N
Species: In
Species: Ga


Dislocation Core Energies

This graph shows the dislocation core energy of a cubic crystal at zero temperature and pressure for a specific set of dislocation core cutoff radii. After obtaining the total energy of the system from conjugate gradient minimizations, non-singular, isotropic and anisotropic elasticity are applied to obtain the dislocation core energy for each of these supercells with different dipole distances. Graphs are generated for each species supported by the model.

(No matching species)

FCC Elastic Constants

This bar chart plot shows the mono-atomic face-centered cubic (fcc) elastic constants predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: In
Species: Ga
Species: N


FCC Lattice Constant

This bar chart plot shows the mono-atomic face-centered cubic (fcc) lattice constant predicted by the current model (shown in red) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Ga
Species: In
Species: N


FCC Stacking Fault Energies

This bar chart plot shows the intrinsic and extrinsic stacking fault energies as well as the unstable stacking and unstable twinning energies for face-centered cubic (fcc) predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

FCC Surface Energies

This bar chart plot shows the mono-atomic face-centered cubic (fcc) relaxed surface energies predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

SC Lattice Constant

This bar chart plot shows the mono-atomic simple cubic (sc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: N
Species: In
Species: Ga


Cubic Crystal Basic Properties Table

Species: Ga

Species: In

Species: N





Elastic constants for cubic crystals at zero temperature and pressure v006

Creators: Junhao Li and Ellad Tadmor
Contributor: tadmor
Publication Year: 2019
DOI: https://doi.org/10.25950/5853fb8f

Computes the cubic elastic constants for some common crystal types (fcc, bcc, sc, diamond) by calculating the hessian of the energy density with respect to strain. An estimate of the error associated with the numerical differentiation performed is reported.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Elastic constants for bcc Ga at zero temperature v006 view 78420
Elastic constants for bcc In at zero temperature v006 view 74774
Elastic constants for bcc N at zero temperature v006 view 71898
Elastic constants for diamond Ga at zero temperature v001 view 402395
Elastic constants for diamond In at zero temperature v001 view 360607
Elastic constants for diamond N at zero temperature v001 view 253711
Elastic constants for fcc Ga at zero temperature v006 view 79613
Elastic constants for fcc In at zero temperature v006 view 72685
Elastic constants for fcc N at zero temperature v006 view 62990
Elastic constants for sc Ga at zero temperature v006 view 82483
Elastic constants for sc In at zero temperature v006 view 57883
Elastic constants for sc N at zero temperature v006 view 65256


Equilibrium structure and energy for a crystal structure at zero temperature and pressure v002

Creators:
Contributor: ilia
Publication Year: 2024
DOI: https://doi.org/10.25950/2f2c4ad3

Computes the equilibrium crystal structure and energy for an arbitrary crystal at zero temperature and applied stress by performing symmetry-constrained relaxation. The crystal structure is specified using the AFLOW prototype designation. Multiple sets of free parameters corresponding to the crystal prototype may be specified as initial guesses for structure optimization. No guarantee is made regarding the stability of computed equilibria, nor that any are the ground state.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Equilibrium crystal structure and energy for Ga in AFLOW crystal prototype A_cI12_220_a v002 view 177352
Equilibrium crystal structure and energy for N in AFLOW crystal prototype A_cP8_205_c v002 view 283144
Equilibrium crystal structure and energy for N in AFLOW crystal prototype A_hP2_194_c v002 view 58330
Equilibrium crystal structure and energy for N in AFLOW crystal prototype A_hP4_194_f v002 view 163879
Equilibrium crystal structure and energy for Ga in AFLOW crystal prototype A_hR22_166_ae3h v002 view 133004
Equilibrium crystal structure and energy for Ga in AFLOW crystal prototype A_oC40_63_2cf3g v002 view 731052
Equilibrium crystal structure and energy for Ga in AFLOW crystal prototype A_oC4_63_c v002 view 59909
Equilibrium crystal structure and energy for GaN in AFLOW crystal prototype AB_cF8_216_a_c v002 view 88406
Equilibrium crystal structure and energy for InN in AFLOW crystal prototype AB_cF8_216_a_c v002 view 134063
Equilibrium crystal structure and energy for GaN in AFLOW crystal prototype AB_cF8_225_a_b v002 view 84699
Equilibrium crystal structure and energy for InN in AFLOW crystal prototype AB_cF8_225_a_b v002 view 147830
Equilibrium crystal structure and energy for GaN in AFLOW crystal prototype AB_hP4_186_b_b v002 view 94013
Equilibrium crystal structure and energy for InN in AFLOW crystal prototype AB_hP4_186_b_b v002 view 59302
Equilibrium crystal structure and energy for GaN in AFLOW crystal prototype AB_hP4_194_c_b v002 view 114922


Equilibrium lattice constant and cohesive energy of a cubic lattice at zero temperature and pressure v007

Creators: Daniel S. Karls and Junhao Li
Contributor: karls
Publication Year: 2019
DOI: https://doi.org/10.25950/2765e3bf

Equilibrium lattice constant and cohesive energy of a cubic lattice at zero temperature and pressure.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Equilibrium zero-temperature lattice constant for bcc Ga v007 view 88745
Equilibrium zero-temperature lattice constant for bcc In v007 view 67910
Equilibrium zero-temperature lattice constant for bcc N v007 view 52565
Equilibrium zero-temperature lattice constant for diamond Ga v007 view 102862
Equilibrium zero-temperature lattice constant for diamond In v007 view 78265
Equilibrium zero-temperature lattice constant for diamond N v007 view 51957
Equilibrium zero-temperature lattice constant for fcc Ga v007 view 83899
Equilibrium zero-temperature lattice constant for fcc In v007 view 68985
Equilibrium zero-temperature lattice constant for fcc N v007 view 53001
Equilibrium zero-temperature lattice constant for sc Ga v007 view 76534
Equilibrium zero-temperature lattice constant for sc In v007 view 68133
Equilibrium zero-temperature lattice constant for sc N v007 view 46328


Equilibrium lattice constants for hexagonal bulk structures at zero temperature and pressure v005

Creators: Daniel S. Karls and Junhao Li
Contributor: karls
Publication Year: 2019
DOI: https://doi.org/10.25950/c339ca32

Calculates lattice constant of hexagonal bulk structures at zero temperature and pressure by using simplex minimization to minimize the potential energy.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Equilibrium lattice constants for hcp Ga v005 view 1558007
Equilibrium lattice constants for hcp In v005 view 1867411
Equilibrium lattice constants for hcp N v005 view 1127031


CohesiveEnergyVsLatticeConstant__TD_554653289799_003
Test Error Categories Link to Error page
Cohesive energy versus lattice constant curve for bcc Ga v004 other view
Cohesive energy versus lattice constant curve for bcc In v004 other view
Cohesive energy versus lattice constant curve for bcc N v004 other view
Cohesive energy versus lattice constant curve for diamond Ga v003 other view
Cohesive energy versus lattice constant curve for diamond In v003 other view
Cohesive energy versus lattice constant curve for diamond N v003 other view
Cohesive energy versus lattice constant curve for fcc Ga v003 other view
Cohesive energy versus lattice constant curve for fcc In v003 other view
Cohesive energy versus lattice constant curve for fcc N v003 other view
Cohesive energy versus lattice constant curve for sc Ga v003 other view
Cohesive energy versus lattice constant curve for sc In v003 other view
Cohesive energy versus lattice constant curve for sc N v003 other view

ElasticConstantsHexagonal__TD_612503193866_004

EquilibriumCrystalStructure__TD_457028483760_000

EquilibriumCrystalStructure__TD_457028483760_002
Test Error Categories Link to Error page
Equilibrium crystal structure and energy for N in AFLOW crystal prototype A_cI20_217_ce v002 other view
Equilibrium crystal structure and energy for N in AFLOW crystal prototype A_cI8_199_a v002 other view
Equilibrium crystal structure and energy for N in AFLOW crystal prototype A_cP8_198_2a v002 other view
Equilibrium crystal structure and energy for N in AFLOW crystal prototype A_hR16_167_cf v002 other view
Equilibrium crystal structure and energy for Ga in AFLOW crystal prototype A_mC2_12_a v002 other view
Equilibrium crystal structure and energy for Ga in AFLOW crystal prototype A_mC4_15_e v002 other view
Equilibrium crystal structure and energy for Ga in AFLOW crystal prototype A_oC8_63_g v002 other view
Equilibrium crystal structure and energy for Ga in AFLOW crystal prototype A_oC8_64_f v002 other view
Equilibrium crystal structure and energy for N in AFLOW crystal prototype A_oP2_51_e v002 other view
Equilibrium crystal structure and energy for Ga in AFLOW crystal prototype A_tI2_139_a v002 other view
Equilibrium crystal structure and energy for In in AFLOW crystal prototype A_tI2_139_a v002 other view
Equilibrium crystal structure and energy for N in AFLOW crystal prototype A_tP4_136_f v002 other view

No Driver
Verification Check Error Categories Link to Error page
DimerContinuityC1__VC_303890932454_005 other view
MemoryLeak__VC_561022993723_004 other view



Wiki is ready to accept new content.

Login to edit Wiki content