Jump to: Tests | Visualizers | Files | Wiki

Sim_LAMMPS_ReaxFF_IslamOstadhosseinBorodin_2015_LiS__SM_058492438145_000

Interatomic potential for Lithium (Li), Sulfur (S).
Use this Potential

Title
A single sentence description.
LAMMPS ReaxFF potential for Li-S systems developed by Islam et al. (2014) v000
Description This is a ReaxFF parametrization intended to study the structural, mechanical, and kinetic behavior of the amorphous lithiated sulfur (a-LixS) compounds.
Species
The supported atomic species.
Li, S
Disclaimer
A statement of applicability provided by the contributor, informing users of the intended use of this KIM Item.
None
Content Origin https://www.ctcms.nist.gov/potentials/entry/2015--Islam-M-M-Ostadhossein-A-Borodin-O-et-al--Li-S/
Contributor I Nikiforov
Maintainer I Nikiforov
Developer M. Mahbub Islam
Alireza Ostadhossein
Oleg Borodin
A. Todd Yeates
William W. Tipton
Richard G. Hennig
Nitin Kumar
Adri C. T. van Duin
Published on KIM 2022
How to Cite

This Simulator Model originally published in [1] is archived in OpenKIM [2-4].

[1] Islam MM, Ostadhossein A, Borodin O, Yeates AT, Tipton WW, Hennig RG, et al. ReaxFF molecular dynamics simulations on lithiated sulfur cathode materials. Phys Chem Chem Phys [Internet]. 2015;17(5):3383–93. Available from: http://dx.doi.org/10.1039/C4CP04532G doi:10.1039/C4CP04532G

[2] Islam MM, Ostadhossein A, Borodin O, Yeates AT, Tipton WW, Hennig RG, et al. LAMMPS ReaxFF potential for Li-S systems developed by Islam et al. (2014) v000. OpenKIM; 2022. doi:10.25950/75cc244d

[3] Tadmor EB, Elliott RS, Sethna JP, Miller RE, Becker CA. The potential of atomistic simulations and the Knowledgebase of Interatomic Models. JOM. 2011;63(7):17. doi:10.1007/s11837-011-0102-6

[4] Elliott RS, Tadmor EB. Knowledgebase of Interatomic Models (KIM) Application Programming Interface (API). OpenKIM; 2011. doi:10.25950/ff8f563a

Click here to download the above citation in BibTeX format.
Funding Not available
Short KIM ID
The unique KIM identifier code.
SM_058492438145_000
Extended KIM ID
The long form of the KIM ID including a human readable prefix (100 characters max), two underscores, and the Short KIM ID. Extended KIM IDs can only contain alpha-numeric characters (letters and digits) and underscores and must begin with a letter.
Sim_LAMMPS_ReaxFF_IslamOstadhosseinBorodin_2015_LiS__SM_058492438145_000
DOI 10.25950/75cc244d
https://doi.org/10.25950/75cc244d
https://search.datacite.org/works/10.25950/75cc244d
KIM Item TypeSimulator Model
KIM API Version2.2
Simulator Name
The name of the simulator as defined in kimspec.edn.
LAMMPS
Potential Type reax
Simulator Potential reax/c

(Click here to learn more about Verification Checks)

Grade Name Category Brief Description Full Results Aux File(s)
P vc-species-supported-as-stated mandatory
The model supports all species it claims to support; see full description.
Results Files
P vc-periodicity-support mandatory
Periodic boundary conditions are handled correctly; see full description.
Results Files
P vc-permutation-symmetry mandatory
Total energy and forces are unchanged when swapping atoms of the same species; see full description.
Results Files
D vc-forces-numerical-derivative consistency
Forces computed by the model agree with numerical derivatives of the energy; see full description.
Results Files
N/A vc-dimer-continuity-c1 informational
The energy versus separation relation of a pair of atoms is C1 continuous (i.e. the function and its first derivative are continuous); see full description.
Results Files
P vc-objectivity informational
Total energy is unchanged and forces transform correctly under rigid-body translation and rotation; see full description.
Results Files
P vc-inversion-symmetry informational
Total energy is unchanged and forces change sign when inverting a configuration through the origin; see full description.
Results Files
F vc-memory-leak informational
The model code does not have memory leaks (i.e. it releases all allocated memory at the end); see full description.
Results Files
N/A vc-thread-safe mandatory
The model returns the same energy and forces when computed in serial and when using parallel threads for a set of configurations. Note that this is not a guarantee of thread safety; see full description.
Results Files


BCC Lattice Constant

This bar chart plot shows the mono-atomic body-centered cubic (bcc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Li
Species: S


Cohesive Energy Graph

This graph shows the cohesive energy versus volume-per-atom for the current mode for four mono-atomic cubic phases (body-centered cubic (bcc), face-centered cubic (fcc), simple cubic (sc), and diamond). The curve with the lowest minimum is the ground state of the crystal if stable. (The crystal structure is enforced in these calculations, so the phase may not be stable.) Graphs are generated for each species supported by the model.

Species: Li
Species: S


Diamond Lattice Constant

This bar chart plot shows the mono-atomic face-centered diamond lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: S


FCC Elastic Constants

This bar chart plot shows the mono-atomic face-centered cubic (fcc) elastic constants predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: S
Species: Li


FCC Lattice Constant

This bar chart plot shows the mono-atomic face-centered cubic (fcc) lattice constant predicted by the current model (shown in red) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: S
Species: Li


FCC Stacking Fault Energies

This bar chart plot shows the intrinsic and extrinsic stacking fault energies as well as the unstable stacking and unstable twinning energies for face-centered cubic (fcc) predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

FCC Surface Energies

This bar chart plot shows the mono-atomic face-centered cubic (fcc) relaxed surface energies predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

SC Lattice Constant

This bar chart plot shows the mono-atomic simple cubic (sc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: S


Cubic Crystal Basic Properties Table

Species: Li

Species: S





Cohesive energy versus lattice constant curve for monoatomic cubic lattices v003

Creators:
Contributor: karls
Publication Year: 2019
DOI: https://doi.org/10.25950/64cb38c5

This Test Driver uses LAMMPS to compute the cohesive energy of a given monoatomic cubic lattice (fcc, bcc, sc, or diamond) at a variety of lattice spacings. The lattice spacings range from a_min (=a_min_frac*a_0) to a_max (=a_max_frac*a_0) where a_0, a_min_frac, and a_max_frac are read from stdin (a_0 is typically approximately equal to the equilibrium lattice constant). The precise scaling and number of lattice spacings sampled between a_min and a_0 (a_0 and a_max) is specified by two additional parameters passed from stdin: N_lower and samplespacing_lower (N_upper and samplespacing_upper). Please see README.txt for further details.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Cohesive energy versus lattice constant curve for bcc Li v004 view 19514
Cohesive energy versus lattice constant curve for bcc S v004 view 22013
Cohesive energy versus lattice constant curve for diamond Li v004 view 70234
Cohesive energy versus lattice constant curve for diamond S v004 view 10911
Cohesive energy versus lattice constant curve for fcc Li v004 view 23115
Cohesive energy versus lattice constant curve for fcc S v004 view 18977
Cohesive energy versus lattice constant curve for sc S v004 view 12751


Elastic constants for cubic crystals at zero temperature and pressure v006

Creators: Junhao Li and Ellad Tadmor
Contributor: tadmor
Publication Year: 2019
DOI: https://doi.org/10.25950/5853fb8f

Computes the cubic elastic constants for some common crystal types (fcc, bcc, sc, diamond) by calculating the hessian of the energy density with respect to strain. An estimate of the error associated with the numerical differentiation performed is reported.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Elastic constants for bcc Li at zero temperature v006 view 49551
Elastic constants for bcc S at zero temperature v006 view 31091
Elastic constants for diamond Li at zero temperature v001 view 152224
Elastic constants for diamond S at zero temperature v001 view 255758
Elastic constants for fcc Li at zero temperature v006 view 26934
Elastic constants for fcc S at zero temperature v006 view 31917
Elastic constants for sc S at zero temperature v006 view 37915


Equilibrium lattice constant and cohesive energy of a cubic lattice at zero temperature and pressure v007

Creators: Daniel S. Karls and Junhao Li
Contributor: karls
Publication Year: 2019
DOI: https://doi.org/10.25950/2765e3bf

Equilibrium lattice constant and cohesive energy of a cubic lattice at zero temperature and pressure.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Equilibrium zero-temperature lattice constant for bcc Li v007 view 17236
Equilibrium zero-temperature lattice constant for bcc S v007 view 20210
Equilibrium zero-temperature lattice constant for diamond Li v007 view 110431
Equilibrium zero-temperature lattice constant for diamond S v007 view 49841
Equilibrium zero-temperature lattice constant for fcc Li v007 view 27387
Equilibrium zero-temperature lattice constant for fcc S v007 view 30405
Equilibrium zero-temperature lattice constant for sc S v007 view 25252


Equilibrium lattice constants for hexagonal bulk structures at zero temperature and pressure v005

Creators: Daniel S. Karls and Junhao Li
Contributor: karls
Publication Year: 2019
DOI: https://doi.org/10.25950/c339ca32

Calculates lattice constant of hexagonal bulk structures at zero temperature and pressure by using simplex minimization to minimize the potential energy.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Equilibrium lattice constants for hcp Li v005 view 158579
Equilibrium lattice constants for hcp S v005 view 335240


Linear thermal expansion coefficient of cubic crystal structures v001

Creators: Mingjian Wen
Contributor: Mwen
Publication Year: 2019
DOI: https://doi.org/10.25950/fc69d82d

This Test Driver uses LAMMPS to compute the linear thermal expansion coefficient at a finite temperature under a given pressure for a cubic lattice (fcc, bcc, sc, diamond) of a single given species.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Linear thermal expansion coefficient of bcc Li at 293.15 K under a pressure of 0 MPa v001 view 518043385


  • No Errors associated with this Model



Wiki is ready to accept new content.

Login to edit Wiki content