Jump to: Tests | Visualizers | Files | Wiki

Sim_LAMMPS_ReaxFF_IslamOstadhosseinBorodin_2015_LiS__SM_058492438145_000

Interatomic potential for Lithium (Li), Sulfur (S).
Use this Potential

Title
A single sentence description.
LAMMPS ReaxFF potential for Li-S systems developed by Islam et al. (2014) v000
Description This is a ReaxFF parametrization intended to study the structural, mechanical, and kinetic behavior of the amorphous lithiated sulfur (a-LixS) compounds.
Species
The supported atomic species.
Li, S
Disclaimer
A statement of applicability provided by the contributor, informing users of the intended use of this KIM Item.
None
Content Origin https://www.ctcms.nist.gov/potentials/entry/2015--Islam-M-M-Ostadhossein-A-Borodin-O-et-al--Li-S/
Contributor I Nikiforov
Maintainer I Nikiforov
Developer M. Mahbub Islam
Alireza Ostadhossein
Oleg Borodin
A. Todd Yeates
William W. Tipton
Richard G. Hennig
Nitin Kumar
Adri C. T. van Duin
Published on KIM 2022
How to Cite

This Simulator Model originally published in [1] is archived in OpenKIM [2-4].

[1] Islam MM, Ostadhossein A, Borodin O, Yeates AT, Tipton WW, Hennig RG, et al. ReaxFF molecular dynamics simulations on lithiated sulfur cathode materials. Phys Chem Chem Phys [Internet]. 2015;17(5):3383–93. Available from: http://dx.doi.org/10.1039/C4CP04532G doi:10.1039/C4CP04532G

[2] Islam MM, Ostadhossein A, Borodin O, Yeates AT, Tipton WW, Hennig RG, et al. LAMMPS ReaxFF potential for Li-S systems developed by Islam et al. (2014) v000. OpenKIM; 2022. doi:10.25950/75cc244d

[3] Tadmor EB, Elliott RS, Sethna JP, Miller RE, Becker CA. The potential of atomistic simulations and the Knowledgebase of Interatomic Models. JOM. 2011;63(7):17. doi:10.1007/s11837-011-0102-6

[4] Elliott RS, Tadmor EB. Knowledgebase of Interatomic Models (KIM) Application Programming Interface (API). OpenKIM; 2011. doi:10.25950/ff8f563a

Click here to download the above citation in BibTeX format.
Funding Not available
Short KIM ID
The unique KIM identifier code.
SM_058492438145_000
Extended KIM ID
The long form of the KIM ID including a human readable prefix (100 characters max), two underscores, and the Short KIM ID. Extended KIM IDs can only contain alpha-numeric characters (letters and digits) and underscores and must begin with a letter.
Sim_LAMMPS_ReaxFF_IslamOstadhosseinBorodin_2015_LiS__SM_058492438145_000
DOI 10.25950/75cc244d
https://doi.org/10.25950/75cc244d
https://commons.datacite.org/doi.org/10.25950/75cc244d
KIM Item TypeSimulator Model
KIM API Version2.2
Simulator Name
The name of the simulator as defined in kimspec.edn.
LAMMPS
Potential Type reax
Simulator Potential reaxff
Run Compatibility portable-models

(Click here to learn more about Verification Checks)

Grade Name Category Brief Description Full Results Aux File(s)
P vc-species-supported-as-stated mandatory
The model supports all species it claims to support; see full description.
Results Files
P vc-periodicity-support mandatory
Periodic boundary conditions are handled correctly; see full description.
Results Files
P vc-permutation-symmetry mandatory
Total energy and forces are unchanged when swapping atoms of the same species; see full description.
Results Files
D vc-forces-numerical-derivative consistency
Forces computed by the model agree with numerical derivatives of the energy; see full description.
Results Files
F vc-dimer-continuity-c1 informational
The energy versus separation relation of a pair of atoms is C1 continuous (i.e. the function and its first derivative are continuous); see full description.
Results Files
P vc-objectivity informational
Total energy is unchanged and forces transform correctly under rigid-body translation and rotation; see full description.
Results Files
P vc-inversion-symmetry informational
Total energy is unchanged and forces change sign when inverting a configuration through the origin; see full description.
Results Files
F vc-memory-leak informational
The model code does not have memory leaks (i.e. it releases all allocated memory at the end); see full description.
Results Files
N/A vc-thread-safe mandatory
The model returns the same energy and forces when computed in serial and when using parallel threads for a set of configurations. Note that this is not a guarantee of thread safety; see full description.
Results Files


BCC Lattice Constant

This bar chart plot shows the mono-atomic body-centered cubic (bcc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Li
Species: S


Cohesive Energy Graph

This graph shows the cohesive energy versus volume-per-atom for the current mode for four mono-atomic cubic phases (body-centered cubic (bcc), face-centered cubic (fcc), simple cubic (sc), and diamond). The curve with the lowest minimum is the ground state of the crystal if stable. (The crystal structure is enforced in these calculations, so the phase may not be stable.) Graphs are generated for each species supported by the model.

Species: Li
Species: S


Diamond Lattice Constant

This bar chart plot shows the mono-atomic face-centered diamond lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: S


Dislocation Core Energies

This graph shows the dislocation core energy of a cubic crystal at zero temperature and pressure for a specific set of dislocation core cutoff radii. After obtaining the total energy of the system from conjugate gradient minimizations, non-singular, isotropic and anisotropic elasticity are applied to obtain the dislocation core energy for each of these supercells with different dipole distances. Graphs are generated for each species supported by the model.

(No matching species)

FCC Elastic Constants

This bar chart plot shows the mono-atomic face-centered cubic (fcc) elastic constants predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Li


FCC Lattice Constant

This bar chart plot shows the mono-atomic face-centered cubic (fcc) lattice constant predicted by the current model (shown in red) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: S
Species: Li


FCC Stacking Fault Energies

This bar chart plot shows the intrinsic and extrinsic stacking fault energies as well as the unstable stacking and unstable twinning energies for face-centered cubic (fcc) predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

FCC Surface Energies

This bar chart plot shows the mono-atomic face-centered cubic (fcc) relaxed surface energies predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

SC Lattice Constant

This bar chart plot shows the mono-atomic simple cubic (sc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: S


Cubic Crystal Basic Properties Table

Species: Li

Species: S





Cohesive energy versus lattice constant curve for monoatomic cubic lattices v003

Creators:
Contributor: karls
Publication Year: 2019
DOI: https://doi.org/10.25950/64cb38c5

This Test Driver uses LAMMPS to compute the cohesive energy of a given monoatomic cubic lattice (fcc, bcc, sc, or diamond) at a variety of lattice spacings. The lattice spacings range from a_min (=a_min_frac*a_0) to a_max (=a_max_frac*a_0) where a_0, a_min_frac, and a_max_frac are read from stdin (a_0 is typically approximately equal to the equilibrium lattice constant). The precise scaling and number of lattice spacings sampled between a_min and a_0 (a_0 and a_max) is specified by two additional parameters passed from stdin: N_lower and samplespacing_lower (N_upper and samplespacing_upper). Please see README.txt for further details.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Cohesive energy versus lattice constant curve for bcc Li v004 view 24148
Cohesive energy versus lattice constant curve for bcc S v004 view 21497
Cohesive energy versus lattice constant curve for diamond Li v004 view 70234
Cohesive energy versus lattice constant curve for diamond S v004 view 13914
Cohesive energy versus lattice constant curve for fcc Li v004 view 13437
Cohesive energy versus lattice constant curve for fcc S v004 view 18994
Cohesive energy versus lattice constant curve for sc S v004 view 16565


Elastic constants for arbitrary crystals at zero temperature and pressure v000

Creators:
Contributor: ilia
Publication Year: 2024
DOI: https://doi.org/10.25950/888f9943

Computes the elastic constants for an arbitrary crystal. A robust computational protocol is used, attempting multiple methods and step sizes to achieve an acceptably low error in numerical differentiation and deviation from material symmetry. The crystal structure is specified using the AFLOW prototype designation as part of the Crystal Genome testing framework. In addition, the distance from the obtained elasticity tensor to the nearest isotropic tensor is computed.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Elastic constants for LiS in AFLOW crystal prototype A2B_cF12_225_c_a at zero temperature and pressure v000 view 943668


Elastic constants for cubic crystals at zero temperature and pressure v006

Creators: Junhao Li and Ellad Tadmor
Contributor: tadmor
Publication Year: 2019
DOI: https://doi.org/10.25950/5853fb8f

Computes the cubic elastic constants for some common crystal types (fcc, bcc, sc, diamond) by calculating the hessian of the energy density with respect to strain. An estimate of the error associated with the numerical differentiation performed is reported.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Elastic constants for bcc Li at zero temperature v006 view 49889
Elastic constants for bcc S at zero temperature v006 view 33269
Elastic constants for diamond Li at zero temperature v001 view 152224
Elastic constants for diamond S at zero temperature v001 view 236616
Elastic constants for fcc Li at zero temperature v006 view 40565
Elastic constants for fcc S at zero temperature v006 view 37399
Elastic constants for sc S at zero temperature v006 view 48737


Equilibrium structure and energy for a crystal structure at zero temperature and pressure v002

Creators:
Contributor: ilia
Publication Year: 2024
DOI: https://doi.org/10.25950/2f2c4ad3

Computes the equilibrium crystal structure and energy for an arbitrary crystal at zero temperature and applied stress by performing symmetry-constrained relaxation. The crystal structure is specified using the AFLOW prototype designation. Multiple sets of free parameters corresponding to the crystal prototype may be specified as initial guesses for structure optimization. No guarantee is made regarding the stability of computed equilibria, nor that any are the ground state.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Equilibrium crystal structure and energy for LiS in AFLOW crystal prototype A2B_cF12_225_c_a v002 view 97641
Equilibrium crystal structure and energy for LiS in AFLOW crystal prototype A2B_oP12_62_2c_c v002 view 111020
Equilibrium crystal structure and energy for S in AFLOW crystal prototype A_aP28_2_14i v002 view 2825887
Equilibrium crystal structure and energy for Li in AFLOW crystal prototype A_cF4_225_a v002 view 82308
Equilibrium crystal structure and energy for Li in AFLOW crystal prototype A_cI2_229_a v002 view 73621
Equilibrium crystal structure and energy for Li in AFLOW crystal prototype A_cP4_213_a v002 view 79363
Equilibrium crystal structure and energy for S in AFLOW crystal prototype A_hP18_143_6d v002 view 132882
Equilibrium crystal structure and energy for Li in AFLOW crystal prototype A_hP1_191_a v002 view 84590
Equilibrium crystal structure and energy for Li in AFLOW crystal prototype A_hP2_194_c v002 view 45874
Equilibrium crystal structure and energy for S in AFLOW crystal prototype A_hP9_154_ac v002 view 75525
Equilibrium crystal structure and energy for S in AFLOW crystal prototype A_hR1_166_a v002 view 53165
Equilibrium crystal structure and energy for Li in AFLOW crystal prototype A_hR3_166_ac v002 view 47454
Equilibrium crystal structure and energy for S in AFLOW crystal prototype A_hR6_148_f v002 view 6064857
Equilibrium crystal structure and energy for S in AFLOW crystal prototype A_mC40_15_5f v002 view 22092481
Equilibrium crystal structure and energy for S in AFLOW crystal prototype A_mC64_15_8f v002 view 28564828
Equilibrium crystal structure and energy for S in AFLOW crystal prototype A_mP28_14_7e v002 view 22516904
Equilibrium crystal structure and energy for S in AFLOW crystal prototype A_mP32_13_8g v002 view 3671423
Equilibrium crystal structure and energy for S in AFLOW crystal prototype A_mP36_14_9e v002 view 9597242
Equilibrium crystal structure and energy for S in AFLOW crystal prototype A_oF128_70_4h v002 view 724744938
Equilibrium crystal structure and energy for S in AFLOW crystal prototype A_oP24_58_eg2h v002 view 2470927
Equilibrium crystal structure and energy for Li in AFLOW crystal prototype A_oP6_51_ak v002 view 84516
Equilibrium crystal structure and energy for LiS in AFLOW crystal prototype AB_cF8_225_a_b v002 view 108443


Equilibrium lattice constant and cohesive energy of a cubic lattice at zero temperature and pressure v007

Creators: Daniel S. Karls and Junhao Li
Contributor: karls
Publication Year: 2019
DOI: https://doi.org/10.25950/2765e3bf

Equilibrium lattice constant and cohesive energy of a cubic lattice at zero temperature and pressure.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Equilibrium zero-temperature lattice constant for bcc Li v007 view 17301
Equilibrium zero-temperature lattice constant for bcc S v007 view 19723
Equilibrium zero-temperature lattice constant for diamond Li v007 view 110431
Equilibrium zero-temperature lattice constant for diamond S v007 view 49988
Equilibrium zero-temperature lattice constant for fcc Li v007 view 24159
Equilibrium zero-temperature lattice constant for fcc S v007 view 29743
Equilibrium zero-temperature lattice constant for sc S v007 view 26724


Equilibrium lattice constants for hexagonal bulk structures at zero temperature and pressure v005

Creators: Daniel S. Karls and Junhao Li
Contributor: karls
Publication Year: 2019
DOI: https://doi.org/10.25950/c339ca32

Calculates lattice constant of hexagonal bulk structures at zero temperature and pressure by using simplex minimization to minimize the potential energy.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Equilibrium lattice constants for hcp Li v005 view 167266
Equilibrium lattice constants for hcp S v005 view 388643


Linear thermal expansion coefficient of cubic crystal structures v002

Creators:
Contributor: mjwen
Publication Year: 2024
DOI: https://doi.org/10.25950/9d9822ec

This Test Driver uses LAMMPS to compute the linear thermal expansion coefficient at a finite temperature under a given pressure for a cubic lattice (fcc, bcc, sc, diamond) of a single given species.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Linear thermal expansion coefficient of bcc Li at 293.15 K under a pressure of 0 MPa v002 view 11067373


High-symmetry surface energies in cubic lattices and broken bond model v004

Creators: Matt Bierbaum
Contributor: mattbierbaum
Publication Year: 2019
DOI: https://doi.org/10.25950/6c43a4e6

Calculates the surface energy of several high symmetry surfaces and produces a broken-bond model fit. In latex form, the fit equations are given by:

E_{FCC} (\vec{n}) = p_1 (4 \left( |x+y| + |x-y| + |x+z| + |x-z| + |z+y| +|z-y|\right)) + p_2 (8 \left( |x| + |y| + |z|\right)) + p_3 (2 ( |x+ 2y + z| + |x+2y-z| + |x-2y + z| + |x-2y-z| + |2x+y+z| + |2x+y-z| +|2x-y+z| +|2x-y-z| +|x+y+2z| +|x+y-2z| +|x-y+2z| +|x-y-2z| ) + c

E_{BCC} (\vec{n}) = p_1 (6 \left( | x+y+z| + |x+y-z| + |-x+y-z| + |x-y+z| \right)) + p_2 (8 \left( |x| + |y| + |z|\right)) + p_3 (4 \left( |x+y| + |x-y| + |x+z| + |x-z| + |z+y| +|z-y|\right)) +c.

In Python, these two fits take the following form:

def BrokenBondFCC(params, index):

import numpy
x, y, z = index
x = x / numpy.sqrt(x**2.+y**2.+z**2.)
y = y / numpy.sqrt(x**2.+y**2.+z**2.)
z = z / numpy.sqrt(x**2.+y**2.+z**2.)

return params[0]*4* (abs(x+y) + abs(x-y) + abs(x+z) + abs(x-z) + abs(z+y) + abs(z-y)) + params[1]*8*(abs(x) + abs(y) + abs(z)) + params[2]*(abs(x+2*y+z) + abs(x+2*y-z) +abs(x-2*y+z) +abs(x-2*y-z) + abs(2*x+y+z) +abs(2*x+y-z) +abs(2*x-y+z) +abs(2*x-y-z) + abs(x+y+2*z) +abs(x+y-2*z) +abs(x-y+2*z) +abs(x-y-2*z))+params[3]

def BrokenBondBCC(params, x, y, z):


import numpy
x, y, z = index
x = x / numpy.sqrt(x**2.+y**2.+z**2.)
y = y / numpy.sqrt(x**2.+y**2.+z**2.)
z = z / numpy.sqrt(x**2.+y**2.+z**2.)

return params[0]*6*(abs(x+y+z) + abs(x-y-z) + abs(x-y+z) + abs(x+y-z)) + params[1]*8*(abs(x) + abs(y) + abs(z)) + params[2]*4* (abs(x+y) + abs(x-y) + abs(x+z) + abs(x-z) + abs(z+y) + abs(z-y)) + params[3]
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Broken-bond fit of high-symmetry surface energies in bcc Li v004 view 2190418


Monovacancy formation energy and relaxation volume for cubic and hcp monoatomic crystals v001

Creators:
Contributor: efuem
Publication Year: 2023
DOI: https://doi.org/10.25950/fca89cea

Computes the monovacancy formation energy and relaxation volume for cubic and hcp monoatomic crystals.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Monovacancy formation energy and relaxation volume for bcc Li view 23150187


Vacancy formation and migration energies for cubic and hcp monoatomic crystals v001

Creators:
Contributor: efuem
Publication Year: 2023
DOI: https://doi.org/10.25950/c27ba3cd

Computes the monovacancy formation and migration energies for cubic and hcp monoatomic crystals.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Vacancy formation and migration energy for bcc Li view 5739233


CohesiveEnergyVsLatticeConstant__TD_554653289799_003
Test Error Categories Link to Error page
Cohesive energy versus lattice constant curve for diamond Li v004 other view

ElasticConstantsCubic__TD_011862047401_006

ElasticConstantsHexagonal__TD_612503193866_004

EquilibriumCrystalStructure__TD_457028483760_000

EquilibriumCrystalStructure__TD_457028483760_002

LatticeConstantCubicEnergy__TD_475411767977_007

SurfaceEnergyCubicCrystalBrokenBondFit__TD_955413365818_004
Test Error Categories Link to Error page
Broken-bond fit of high-symmetry surface energies in bcc Li v004 other view

No Driver
Verification Check Error Categories Link to Error page
ForcesNumerDeriv__VC_710586816390_003 other view



Wiki is ready to accept new content.

Login to edit Wiki content