Jump to: Tests | Visualizers | Files | Wiki

Sim_LAMMPS_SMTBQ_SallesPolitanoAmzallag_2016_AlO__SM_853967355976_000

Title
A single sentence description.
LAMMPS SMTBQ potential for the Al-O system developed by Salles et al. (2016) v000
Description A tight-binding variable-charge model aimed at performing large-scale realistic simulations of bulk, surfaces and interfaces of aluminum oxides have been developed. This model is based on the charge equilibration (QEq) method and explicitly takes into account the mixed iono–covalent character of the metal–oxygen bond by means of a tight-binding analytical approach in the second-moment approximation of the electronic structure. The parameters of the model were optimized to reproduce structural and energetic properties of the a-Al2O3 corundum structure at room temperature and pressure. The model exhibits a good transferability between five alumina polymorphs: corundum, Rh2O3 (II)-type, perovskite (Pbnm), CaIrO3-type and U2S3-type structures. The limit length is rc2sm=dc2**2.
Species
The supported atomic species.
Al, O
Disclaimer
A statement of applicability provided by the contributor, informing users of the intended use of this KIM Item.
None
Content Origin LAMMPS package 22-Sep-2017
Contributor ronmiller
Maintainer ronmiller
Author Ronald E. Miller
Publication Year 2019
Item Citation

This Simulator Model originally published in [1] is archived in OpenKIM [2-4].

[1] Salles N, Politano O, Amzallag E, Tétot R. Molecular dynamics study of high-pressure alumina polymorphs with a tight-binding variable-charge model. Computational Materials Science [Internet]. 2016Jan;111:181–9. Available from: https://doi.org/10.1016/j.commatsci.2015.09.017 doi:10.1016/j.commatsci.2015.09.017

[2] Miller RE. LAMMPS SMTBQ potential for the Al-O system developed by Salles et al. (2016) v000. OpenKIM; 2019. doi:10.25950/4b35d834

[3] Tadmor EB, Elliott RS, Sethna JP, Miller RE, Becker CA. The potential of atomistic simulations and the Knowledgebase of Interatomic Models. JOM. 2011;63(7):17. doi:10.1007/s11837-011-0102-6

[4] Elliott RS, Tadmor EB. Knowledgebase of Interatomic Models (KIM) Application Programming Interface (API). OpenKIM; 2011. doi:10.25950/ff8f563a

Click here to download the above citation in BibTeX format.
Short KIM ID
The unique KIM identifier code.
SM_853967355976_000
Extended KIM ID
The long form of the KIM ID including a human readable prefix (100 characters max), two underscores, and the Short KIM ID. Extended KIM IDs can only contain alpha-numeric characters (letters and digits) and underscores and must begin with a letter.
Sim_LAMMPS_SMTBQ_SallesPolitanoAmzallag_2016_AlO__SM_853967355976_000
DOI 10.25950/4b35d834
https://doi.org/10.25950/4b35d834
https://search.datacite.org/works/10.25950/4b35d834
KIM Item TypeSimulator Model
KIM API Version2.1
Simulator Name
The name of the simulator as defined in kimspec.edn.
LAMMPS
Potential Type smtbq
Simulator Potential smtbq

Verification Check Dashboard

(Click here to learn more about Verification Checks)

Grade Name Category Brief Description Full Results Aux File(s)
P vc-species-supported-as-stated mandatory
The model supports all species it claims to support; see full description.
Results Files
F vc-periodicity-support mandatory
Periodic boundary conditions are handled correctly; see full description.
Results Files
F vc-permutation-symmetry mandatory
Total energy and forces are unchanged when swapping atoms of the same species; see full description.
Results Files
N/A vc-forces-numerical-derivative consistency
Forces computed by the model agree with numerical derivatives of the energy; see full description.
Results Files
N/A vc-dimer-continuity-c1 informational
The energy versus separation relation of a pair of atoms is C1 continuous (i.e. the function and its first derivative are continuous); see full description.
Results Files
P vc-objectivity informational
Total energy is unchanged and forces transform correctly under rigid-body translation and rotation; see full description.
Results Files
P vc-inversion-symmetry informational
Total energy is unchanged and forces change sign when inverting a configuration through the origin; see full description.
Results Files
N/A vc-memory-leak informational
The model code does not have memory leaks (i.e. it releases all allocated memory at the end); see full description.
Results Files
N/A vc-thread-safe mandatory
The model returns the same energy and forces when computed in serial and when using parallel threads for a set of configurations. Note that this is not a guarantee of thread safety; see full description.
Results Files

Visualizers (in-page)


BCC Lattice Constant

This bar chart plot shows the mono-atomic body-centered cubic (bcc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

Cohesive Energy Graph

This graph shows the cohesive energy versus volume-per-atom for the current mode for four mono-atomic cubic phases (body-centered cubic (bcc), face-centered cubic (fcc), simple cubic (sc), and diamond). The curve with the lowest minimum is the ground state of the crystal if stable. (The crystal structure is enforced in these calculations, so the phase may not be stable.) Graphs are generated for each species supported by the model.

Species: O
Species: Al


Diamond Lattice Constant

This bar chart plot shows the mono-atomic face-centered diamond lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

FCC Elastic Constants

This bar chart plot shows the mono-atomic face-centered cubic (fcc) elastic constants predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

FCC Lattice Constant

This bar chart plot shows the mono-atomic face-centered cubic (fcc) lattice constant predicted by the current model (shown in red) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

FCC Stacking Fault Energies

This bar chart plot shows the intrinsic and extrinsic stacking fault energies as well as the unstable stacking and unstable twinning energies for face-centered cubic (fcc) predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

FCC Surface Energies

This bar chart plot shows the mono-atomic face-centered cubic (fcc) relaxed surface energies predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

SC Lattice Constant

This bar chart plot shows the mono-atomic simple cubic (sc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

Cubic Crystal Basic Properties Table

Species: Al

Species: O



Tests

CohesiveEnergyVsLatticeConstant__TD_554653289799_002
This Test Driver uses LAMMPS to compute the cohesive energy of a given monoatomic cubic lattice (fcc, bcc, sc, or diamond) at a variety of lattice spacings. The lattice spacings range from a_min (=a_min_frac*a_0) to a_max (=a_max_frac*a_0) where a_0, a_min_frac, and a_max_frac are read from stdin (a_0 is typically approximately equal to the equilibrium lattice constant). The precise scaling and number of lattice spacings sampled between a_min and a_0 (a_0 and a_max) is specified by two additional parameters passed from stdin: N_lower and samplespacing_lower (N_upper and samplespacing_upper). Please see README.txt for further details.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
CohesiveEnergyVsLatticeConstant_bcc_Al__TE_320860761056_002 view 119998
CohesiveEnergyVsLatticeConstant_bcc_O__TE_308147440282_002 view 118458
CohesiveEnergyVsLatticeConstant_sc_Al__TE_549565909158_002 view 118939
CohesiveEnergyVsLatticeConstant_sc_O__TE_235966530189_002 view 124329
ElasticConstantsCubic__TD_011862047401_004
Computes the cubic elastic constants for some common crystal types (fcc, bcc, sc) by calculating the hessian of the energy density with respect to strain. An estimate of the error associated with the numerical differentiation performed is reported.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
ElasticConstantsCubic_bcc_Al__TE_143620255826_004 view 11133
ElasticConstantsCubic_bcc_O__TE_703936613419_004 view 10460
ElasticConstantsCubic_sc_Al__TE_566227372929_004 view 10556
ElasticConstantsCubic_sc_O__TE_538486289758_004 view 11101
LatticeConstantCubicEnergy__TD_475411767977_005
Equilibrium lattice constant and cohesive energy of a cubic lattice at zero temperature and pressure.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
LatticeConstantCubicEnergy_bcc_Al__TE_201065028814_005 view 9240
LatticeConstantCubicEnergy_bcc_O__TE_562157456169_005 view 10363
LatticeConstantCubicEnergy_diamond_Al__TE_586085652256_005 view 10556
LatticeConstantCubicEnergy_fcc_Al__TE_156715955670_005 view 9850
LatticeConstantCubicEnergy_fcc_O__TE_186542553312_005 view 9626
LatticeConstantCubicEnergy_sc_Al__TE_272202056996_005 view 10524
LatticeConstantCubicEnergy_sc_O__TE_577349523939_005 view 10396


Errors

ElasticConstantsFirstStrainGradient__TD_361847723785_000
Test Error Categories Link to Error page
ElasticConstantsFirstStrainGradientNumerical_fcc_Al__TE_531821030293_000 mismatch view

Grain_Boundary_Symmetric_Tilt_Relaxed_Energy_vs_Angle_Cubic_Crystal__TD_410381120771_000

LatticeConstantCubicEnergy__TD_475411767977_007

LatticeConstantHexagonalEnergy__TD_942334626465_005

LinearThermalExpansionCoeffCubic__TD_522633393614_000
Test Error Categories Link to Error page
LinearThermalExpansionCoeff_fcc_Al__TE_957040092249_000 mismatch view

VacancyFormationEnergyRelaxationVolume__TD_647413317626_000

VacancyFormationMigration__TD_554849987965_000

No Driver
Verification Check Error Categories Link to Error page
UnitConversion__VC_128739598203_000 mismatch view



Wiki

Wiki is ready to accept new content.

Login to edit Wiki content