Jump to: Tests | Visualizers | Files | Wiki

Sim_LAMMPS_SMTBQ_SallesPolitanoAmzallag_2016_TiO__SM_349577644423_000

Title
A single sentence description.
LAMMPS SMTBQ potential for the Ti-O system developed by Salles et al. (2016) v000
Description A tight-binding variable-charge model aimed at performing large-scale realistic simulations of bulk,
surfaces and interfaces of aluminum oxides have been developed. This model is based on the charge
equilibration (QEq) method and explicitly takes into account the mixed iono–covalent character of the
metal–oxygen bond by means of a tight-binding analytical approach in the second-moment approximation of the electronic structure. The parameters of the model were optimized to reproduce structural and
energetic properties of the a-Al2O3 corundum structure at room temperature and pressure. The model
exhibits a good transferability between five alumina polymorphs: corundum, Rh2O3 (II)-type, perovskite
(Pbnm), CaIrO3-type and U2S3-type structures. The limit length is rc2sm=dc2**2.
Species
The supported atomic species.
O, Ti
Disclaimer
A statement of applicability provided by the contributor, informing users of the intended use of this KIM Item.
None
Content Origin LAMMPS package 22-Sep-2017
Contributor ronmiller
Maintainer ronmiller
Author Ronald E. Miller
Publication Year 2019
Item Citation

This Simulator Model originally published in [1] is archived in OpenKIM [2-4].

[1] Salles N, Politano O, Amzallag E, Tétot R. Molecular dynamics study of high-pressure alumina polymorphs with a tight-binding variable-charge model. Computational Materials Science [Internet]. 2016Jan;111:181–9. Available from: https://doi.org/10.1016/j.commatsci.2015.09.017 doi:10.1016/j.commatsci.2015.09.017

[2] Miller RE. LAMMPS SMTBQ potential for the Ti-O system developed by Salles et al. (2016) v000. OpenKIM; 2019. doi:10.25950/7737dab6

[3] Tadmor EB, Elliott RS, Sethna JP, Miller RE, Becker CA. The potential of atomistic simulations and the Knowledgebase of Interatomic Models. JOM. 2011;63(7):17. doi:10.1007/s11837-011-0102-6

[4] Elliott RS, Tadmor EB. Knowledgebase of Interatomic Models (KIM) Application Programming Interface (API). OpenKIM; 2011. doi:10.25950/ff8f563a

Click here to download the above citation in BibTeX format.
Short KIM ID
The unique KIM identifier code.
SM_349577644423_000
Extended KIM ID
The long form of the KIM ID including a human readable prefix (100 characters max), two underscores, and the Short KIM ID. Extended KIM IDs can only contain alpha-numeric characters (letters and digits) and underscores and must begin with a letter.
Sim_LAMMPS_SMTBQ_SallesPolitanoAmzallag_2016_TiO__SM_349577644423_000
DOI 10.25950/7737dab6
https://doi.org/10.25950/7737dab6
https://search.datacite.org/works/10.25950/7737dab6
KIM Item TypeSimulator Model
KIM API Version2.1
Simulator Name
The name of the simulator as defined in kimspec.edn.
LAMMPS
Potential Type smtbq
Simulator Potential smtbq

Verification Check Dashboard

(Click here to learn more about Verification Checks)

Grade Name Category Brief Description Full Results Aux File(s)
P vc-species-supported-as-stated mandatory
The model supports all species it claims to support; see full description.
Results Files
F vc-periodicity-support mandatory
Periodic boundary conditions are handled correctly; see full description.
Results Files
F vc-permutation-symmetry mandatory
Total energy and forces are unchanged when swapping atoms of the same species; see full description.
Results Files
N/A vc-forces-numerical-derivative consistency
Forces computed by the model agree with numerical derivatives of the energy; see full description.
Results Files
P vc-dimer-continuity-c1 informational
The energy versus separation relation of a pair of atoms is C1 continuous (i.e. the function and its first derivative are continuous); see full description.
Results Files
P vc-objectivity informational
Total energy is unchanged and forces transform correctly under rigid-body translation and rotation; see full description.
Results Files
P vc-inversion-symmetry informational
Total energy is unchanged and forces change sign when inverting a configuration through the origin; see full description.
Results Files
N/A vc-memory-leak informational
The model code does not have memory leaks (i.e. it releases all allocated memory at the end); see full description.
Results Files
N/A vc-thread-safe mandatory
The model returns the same energy and forces when computed in serial and when using parallel threads for a set of configurations. Note that this is not a guarantee of thread safety; see full description.
Results Files

Visualizers (in-page)


BCC Lattice Constant

This bar chart plot shows the mono-atomic body-centered cubic (bcc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

Cohesive Energy Graph

This graph shows the cohesive energy versus volume-per-atom for the current mode for four mono-atomic cubic phases (body-centered cubic (bcc), face-centered cubic (fcc), simple cubic (sc), and diamond). The curve with the lowest minimum is the ground state of the crystal if stable. (The crystal structure is enforced in these calculations, so the phase may not be stable.) Graphs are generated for each species supported by the model.

Species: Ti
Species: O


Diamond Lattice Constant

This bar chart plot shows the mono-atomic face-centered diamond lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

FCC Elastic Constants

This bar chart plot shows the mono-atomic face-centered cubic (fcc) elastic constants predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

FCC Lattice Constant

This bar chart plot shows the mono-atomic face-centered cubic (fcc) lattice constant predicted by the current model (shown in red) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

FCC Stacking Fault Energies

This bar chart plot shows the intrinsic and extrinsic stacking fault energies as well as the unstable stacking and unstable twinning energies for face-centered cubic (fcc) predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

FCC Surface Energies

This bar chart plot shows the mono-atomic face-centered cubic (fcc) relaxed surface energies predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

SC Lattice Constant

This bar chart plot shows the mono-atomic simple cubic (sc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

Cubic Crystal Basic Properties Table

Species: O

Species: Ti



Tests

CohesiveEnergyVsLatticeConstant__TD_554653289799_002
This Test Driver uses LAMMPS to compute the cohesive energy of a given monoatomic cubic lattice (fcc, bcc, sc, or diamond) at a variety of lattice spacings. The lattice spacings range from a_min (=a_min_frac*a_0) to a_max (=a_max_frac*a_0) where a_0, a_min_frac, and a_max_frac are read from stdin (a_0 is typically approximately equal to the equilibrium lattice constant). The precise scaling and number of lattice spacings sampled between a_min and a_0 (a_0 and a_max) is specified by two additional parameters passed from stdin: N_lower and samplespacing_lower (N_upper and samplespacing_upper). Please see README.txt for further details.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
CohesiveEnergyVsLatticeConstant_bcc_O__TE_308147440282_002 view 149099
CohesiveEnergyVsLatticeConstant_bcc_Ti__TE_269215961393_002 view 157217
CohesiveEnergyVsLatticeConstant_sc_O__TE_235966530189_002 view 153334
CohesiveEnergyVsLatticeConstant_sc_Ti__TE_376517511478_002 view 148521
ElasticConstantsCubic__TD_011862047401_004
Computes the cubic elastic constants for some common crystal types (fcc, bcc, sc) by calculating the hessian of the energy density with respect to strain. An estimate of the error associated with the numerical differentiation performed is reported.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
ElasticConstantsCubic_bcc_O__TE_703936613419_004 view 16075
ElasticConstantsCubic_bcc_Ti__TE_530002460811_004 view 15946
ElasticConstantsCubic_sc_O__TE_538486289758_004 view 16428
ElasticConstantsCubic_sc_Ti__TE_457585945605_004 view 16460
LatticeConstantCubicEnergy__TD_475411767977_005
Equilibrium lattice constant and cohesive energy of a cubic lattice at zero temperature and pressure.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
LatticeConstantCubicEnergy_bcc_O__TE_562157456169_005 view 14085
LatticeConstantCubicEnergy_bcc_Ti__TE_679433293274_005 view 14952
LatticeConstantCubicEnergy_fcc_O__TE_186542553312_005 view 14374
LatticeConstantCubicEnergy_fcc_Ti__TE_652085158810_005 view 14342
LatticeConstantCubicEnergy_sc_O__TE_577349523939_005 view 14310
LatticeConstantCubicEnergy_sc_Ti__TE_129979632673_005 view 14438


Errors

LatticeConstantCubicEnergy__TD_475411767977_007

LatticeConstantHexagonalEnergy__TD_942334626465_005

VacancyFormationEnergyRelaxationVolume__TD_647413317626_000

VacancyFormationMigration__TD_554849987965_000

No Driver
Verification Check Error Categories Link to Error page
DimerContinuityC1__VC_303890932454_002 other view
UnitConversion__VC_128739598203_000 mismatch view



Wiki

Wiki is ready to accept new content.

Login to edit Wiki content