Jump to: Tests | Visualizers | Files | Wiki

EAM_Dynamo_FarkasCaro_2020_FeNiCrCoAl__MO_820335782779_000

Interatomic potential for Aluminum (Al), Chromium (Cr), Cobalt (Co), Iron (Fe), Nickel (Ni).
Use this Potential

Title
A single sentence description.
EAM potential (LAMMPS cubic hermite tabulation) for the Fe-Ni-Cr-Co-Al system developed by Farkas and Caro (2020) v000
Description
A short description of the Model describing its key features including for example: type of model (pair potential, 3-body potential, EAM, etc.), modeled species (Ac, Ag, ..., Zr), intended purpose, origin, and so on.
This is a set of embedded atom model (EAM) interatomic potentials developed to represent highly idealized face-centered cubic (FCC) mixtures of Fe–Ni–Cr–Co–Al at near-equiatomic compositions. Potential functions for the transition metals and their crossed interactions are taken from previous work for Fe–Ni–Cr–Co–Cu [D. Farkas and A. Caro: J. Mater. Res. 33 (19), 3218–3225, 2018], while cross-pair interactions involving Al were developed using a mix of the component pair functions fitted to known intermetallic properties. The resulting heats of mixing of all binary equiatomic random FCC mixtures not containing Al is low, but significant short-range ordering appears in those containing Al, driven by a large atomic size difference.
Species
The supported atomic species.
Al, Co, Cr, Fe, Ni
Disclaimer
A statement of applicability provided by the contributor, informing users of the intended use of this KIM Item.
None
Content Origin https://www.ctcms.nist.gov/potentials/entry/2020--Farkas-D-Caro-A--Fe-Ni-Cr-Co-Al/
Contributor ilia Nikiforov
Maintainer ilia Nikiforov
Developer Diana Farkas
A. Caro
Published on KIM 2022
How to Cite

This Model originally published in [1] is archived in OpenKIM [2-5].

[1] Farkas D, Caro A. Model interatomic potentials for Fe–Ni–Cr–Co–Al high-entropy alloys. Journal of Materials Research [Internet]. 2020Nov1;35(22):3031–40. Available from: https://doi.org/10.1557/jmr.2020.294 doi:10.1557/jmr.2020.294 — (Primary Source) A primary source is a reference directly related to the item documenting its development, as opposed to other sources that are provided as background information.

[2] EAM potential (LAMMPS cubic hermite tabulation) for the Fe-Ni-Cr-Co-Al system developed by Farkas and Caro (2020) v000. OpenKIM; 2022. doi:10.25950/8c495c7e

[3] EAM Model Driver for tabulated potentials with cubic Hermite spline interpolation as used in LAMMPS v005. OpenKIM; 2018. doi:10.25950/68defa36

[4] Tadmor EB, Elliott RS, Sethna JP, Miller RE, Becker CA. The potential of atomistic simulations and the Knowledgebase of Interatomic Models. JOM. 2011;63(7):17. doi:10.1007/s11837-011-0102-6

[5] Elliott RS, Tadmor EB. Knowledgebase of Interatomic Models (KIM) Application Programming Interface (API). OpenKIM; 2011. doi:10.25950/ff8f563a

Click here to download the above citation in BibTeX format.
Funding Award Number: 1507846
Funder: Division of Materials Research

Short KIM ID
The unique KIM identifier code.
MO_820335782779_000
Extended KIM ID
The long form of the KIM ID including a human readable prefix (100 characters max), two underscores, and the Short KIM ID. Extended KIM IDs can only contain alpha-numeric characters (letters and digits) and underscores and must begin with a letter.
EAM_Dynamo_FarkasCaro_2020_FeNiCrCoAl__MO_820335782779_000
DOI 10.25950/8c495c7e
https://doi.org/10.25950/8c495c7e
https://search.datacite.org/works/10.25950/8c495c7e
KIM Item Type
Specifies whether this is a Portable Model (software implementation of an interatomic model); Portable Model with parameter file (parameter file to be read in by a Model Driver); Model Driver (software implementation of an interatomic model that reads in parameters).
Portable Model using Model Driver EAM_Dynamo__MD_120291908751_005
DriverEAM_Dynamo__MD_120291908751_005
KIM API Version2.2
Potential Type eam

(Click here to learn more about Verification Checks)

Grade Name Category Brief Description Full Results Aux File(s)
P vc-species-supported-as-stated mandatory
The model supports all species it claims to support; see full description.
Results Files
P vc-periodicity-support mandatory
Periodic boundary conditions are handled correctly; see full description.
Results Files
P vc-permutation-symmetry mandatory
Total energy and forces are unchanged when swapping atoms of the same species; see full description.
Results Files
B vc-forces-numerical-derivative consistency
Forces computed by the model agree with numerical derivatives of the energy; see full description.
Results Files
F vc-dimer-continuity-c1 informational
The energy versus separation relation of a pair of atoms is C1 continuous (i.e. the function and its first derivative are continuous); see full description.
Results Files
P vc-objectivity informational
Total energy is unchanged and forces transform correctly under rigid-body translation and rotation; see full description.
Results Files
P vc-inversion-symmetry informational
Total energy is unchanged and forces change sign when inverting a configuration through the origin; see full description.
Results Files
P vc-memory-leak informational
The model code does not have memory leaks (i.e. it releases all allocated memory at the end); see full description.
Results Files
P vc-thread-safe mandatory
The model returns the same energy and forces when computed in serial and when using parallel threads for a set of configurations. Note that this is not a guarantee of thread safety; see full description.
Results Files
P vc-unit-conversion mandatory
The model is able to correctly convert its energy and/or forces to different unit sets; see full description.
Results Files


BCC Lattice Constant

This bar chart plot shows the mono-atomic body-centered cubic (bcc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Al
Species: Ni
Species: Fe
Species: Co
Species: Cr


Cohesive Energy Graph

This graph shows the cohesive energy versus volume-per-atom for the current mode for four mono-atomic cubic phases (body-centered cubic (bcc), face-centered cubic (fcc), simple cubic (sc), and diamond). The curve with the lowest minimum is the ground state of the crystal if stable. (The crystal structure is enforced in these calculations, so the phase may not be stable.) Graphs are generated for each species supported by the model.

Species: Ni
Species: Co
Species: Al
Species: Cr
Species: Fe


Diamond Lattice Constant

This bar chart plot shows the mono-atomic face-centered diamond lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Co
Species: Fe
Species: Al
Species: Cr
Species: Ni


FCC Elastic Constants

This bar chart plot shows the mono-atomic face-centered cubic (fcc) elastic constants predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Cr
Species: Fe
Species: Al
Species: Co
Species: Ni


FCC Lattice Constant

This bar chart plot shows the mono-atomic face-centered cubic (fcc) lattice constant predicted by the current model (shown in red) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Co
Species: Al
Species: Fe
Species: Cr
Species: Ni


FCC Stacking Fault Energies

This bar chart plot shows the intrinsic and extrinsic stacking fault energies as well as the unstable stacking and unstable twinning energies for face-centered cubic (fcc) predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Ni
Species: Al


FCC Surface Energies

This bar chart plot shows the mono-atomic face-centered cubic (fcc) relaxed surface energies predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

SC Lattice Constant

This bar chart plot shows the mono-atomic simple cubic (sc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Co
Species: Fe
Species: Cr
Species: Al
Species: Ni


Cubic Crystal Basic Properties Table

Species: Al

Species: Co

Species: Cr

Species: Fe

Species: Ni





Cohesive energy versus lattice constant curve for monoatomic cubic lattices v003

Creators:
Contributor: karls
Publication Year: 2019
DOI: https://doi.org/10.25950/64cb38c5

This Test Driver uses LAMMPS to compute the cohesive energy of a given monoatomic cubic lattice (fcc, bcc, sc, or diamond) at a variety of lattice spacings. The lattice spacings range from a_min (=a_min_frac*a_0) to a_max (=a_max_frac*a_0) where a_0, a_min_frac, and a_max_frac are read from stdin (a_0 is typically approximately equal to the equilibrium lattice constant). The precise scaling and number of lattice spacings sampled between a_min and a_0 (a_0 and a_max) is specified by two additional parameters passed from stdin: N_lower and samplespacing_lower (N_upper and samplespacing_upper). Please see README.txt for further details.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Cohesive energy versus lattice constant curve for bcc Al v004 view 11927
Cohesive energy versus lattice constant curve for bcc Co v004 view 13008
Cohesive energy versus lattice constant curve for bcc Cr v004 view 13306
Cohesive energy versus lattice constant curve for bcc Fe v004 view 17630
Cohesive energy versus lattice constant curve for bcc Ni v004 view 9767
Cohesive energy versus lattice constant curve for diamond Al v004 view 25084
Cohesive energy versus lattice constant curve for diamond Co v003 view 11666
Cohesive energy versus lattice constant curve for diamond Cr v003 view 8981
Cohesive energy versus lattice constant curve for diamond Fe v004 view 13902
Cohesive energy versus lattice constant curve for diamond Ni v004 view 17108
Cohesive energy versus lattice constant curve for fcc Al v004 view 9349
Cohesive energy versus lattice constant curve for fcc Co v003 view 9051
Cohesive energy versus lattice constant curve for fcc Cr v003 view 12672
Cohesive energy versus lattice constant curve for fcc Fe v004 view 9051
Cohesive energy versus lattice constant curve for fcc Ni v004 view 10513
Cohesive energy versus lattice constant curve for sc Al v004 view 24637
Cohesive energy versus lattice constant curve for sc Co v003 view 12523
Cohesive energy versus lattice constant curve for sc Cr v003 view 16176
Cohesive energy versus lattice constant curve for sc Fe v004 view 9518
Cohesive energy versus lattice constant curve for sc Ni v004 view 17369


Elastic constants for cubic crystals at zero temperature and pressure v006

Creators: Junhao Li and Ellad Tadmor
Contributor: tadmor
Publication Year: 2019
DOI: https://doi.org/10.25950/5853fb8f

Computes the cubic elastic constants for some common crystal types (fcc, bcc, sc, diamond) by calculating the hessian of the energy density with respect to strain. An estimate of the error associated with the numerical differentiation performed is reported.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Elastic constants for bcc Al at zero temperature v006 view 21320
Elastic constants for bcc Co at zero temperature v006 view 19464
Elastic constants for bcc Cr at zero temperature v006 view 18728
Elastic constants for bcc Fe at zero temperature v006 view 17741
Elastic constants for bcc Ni at zero temperature v006 view 28103
Elastic constants for fcc Al at zero temperature v006 view 11703
Elastic constants for fcc Co at zero temperature v006 view 18977
Elastic constants for fcc Cr at zero temperature v006 view 21145
Elastic constants for fcc Fe at zero temperature v006 view 18261
Elastic constants for fcc Ni at zero temperature v006 view 19186
Elastic constants for sc Al at zero temperature v006 view 11368
Elastic constants for sc Co at zero temperature v006 view 17386
Elastic constants for sc Cr at zero temperature v006 view 23519
Elastic constants for sc Fe at zero temperature v006 view 18132
Elastic constants for sc Ni at zero temperature v006 view 30116


Relaxed energy as a function of tilt angle for a symmetric tilt grain boundary within a cubic crystal v002

Creators: Brandon Runnels
Contributor: brunnels
Publication Year: 2019
DOI: https://doi.org/10.25950/4723cee7

Computes grain boundary energy for a range of tilt angles given a crystal structure, tilt axis, and material.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Relaxed energy as a function of tilt angle for a 111 symmetric tilt grain boundary in bcc Fe v000 view 19311555
Relaxed energy as a function of tilt angle for a 112 symmetric tilt grain boundary in bcc Fe v000 view 113741285
Relaxed energy as a function of tilt angle for a 110 symmetric tilt grain boundary in fcc Fe v000 view 19177529
Relaxed energy as a function of tilt angle for a 111 symmetric tilt grain boundary in fcc Fe v000 view 23371408
Relaxed energy as a function of tilt angle for a 112 symmetric tilt grain boundary in fcc Fe v000 view 77092622
Relaxed energy as a function of tilt angle for a 112 symmetric tilt grain boundary in fcc Ni v000 view 36802895


Relaxed energy as a function of tilt angle for a symmetric tilt grain boundary within a cubic crystal v003

Creators:
Contributor: brunnels
Publication Year: 2022
DOI: https://doi.org/10.25950/2c59c9d6

Computes grain boundary energy for a range of tilt angles given a crystal structure, tilt axis, and material.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Relaxed energy as a function of tilt angle for a 100 symmetric tilt grain boundary in fcc Al v003 view 5452158
Relaxed energy as a function of tilt angle for a 100 symmetric tilt grain boundary in fcc Fe v001 view 7847165
Relaxed energy as a function of tilt angle for a 100 symmetric tilt grain boundary in fcc Ni v001 view 6681434
Relaxed energy as a function of tilt angle for a 110 symmetric tilt grain boundary in fcc Al v001 view 16608965
Relaxed energy as a function of tilt angle for a 110 symmetric tilt grain boundary in fcc Ni v001 view 39984768
Relaxed energy as a function of tilt angle for a 111 symmetric tilt grain boundary in fcc Al v001 view 8185190
Relaxed energy as a function of tilt angle for a 111 symmetric tilt grain boundary in fcc Ni v001 view 11893845
Relaxed energy as a function of tilt angle for a 112 symmetric tilt grain boundary in fcc Al v001 view 33339808


Equilibrium lattice constant and cohesive energy of a cubic lattice at zero temperature and pressure v007

Creators: Daniel S. Karls and Junhao Li
Contributor: karls
Publication Year: 2019
DOI: https://doi.org/10.25950/2765e3bf

Equilibrium lattice constant and cohesive energy of a cubic lattice at zero temperature and pressure.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Equilibrium zero-temperature lattice constant for bcc Al v007 view 7193
Equilibrium zero-temperature lattice constant for bcc Co v007 view 11696
Equilibrium zero-temperature lattice constant for bcc Cr v007 view 7603
Equilibrium zero-temperature lattice constant for bcc Fe v007 view 11703
Equilibrium zero-temperature lattice constant for bcc Ni v007 view 12164
Equilibrium zero-temperature lattice constant for diamond Al v007 view 12602
Equilibrium zero-temperature lattice constant for diamond Co v007 view 12433
Equilibrium zero-temperature lattice constant for diamond Cr v007 view 13348
Equilibrium zero-temperature lattice constant for diamond Fe v007 view 12174
Equilibrium zero-temperature lattice constant for diamond Ni v007 view 8013
Equilibrium zero-temperature lattice constant for fcc Al v007 view 12552
Equilibrium zero-temperature lattice constant for fcc Co v007 view 11706
Equilibrium zero-temperature lattice constant for fcc Cr v007 view 8274
Equilibrium zero-temperature lattice constant for fcc Fe v007 view 11876
Equilibrium zero-temperature lattice constant for fcc Ni v007 view 9243
Equilibrium zero-temperature lattice constant for sc Al v007 view 7529
Equilibrium zero-temperature lattice constant for sc Co v007 view 6895
Equilibrium zero-temperature lattice constant for sc Cr v007 view 8125
Equilibrium zero-temperature lattice constant for sc Fe v007 view 12184
Equilibrium zero-temperature lattice constant for sc Ni v007 view 12144


Equilibrium lattice constants for hexagonal bulk structures at zero temperature and pressure v005

Creators: Daniel S. Karls and Junhao Li
Contributor: karls
Publication Year: 2019
DOI: https://doi.org/10.25950/c339ca32

Calculates lattice constant of hexagonal bulk structures at zero temperature and pressure by using simplex minimization to minimize the potential energy.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Equilibrium lattice constants for hcp Al v005 view 128671
Equilibrium lattice constants for hcp Co v005 view 148566
Equilibrium lattice constants for hcp Cr v005 view 148492
Equilibrium lattice constants for hcp Fe v005 view 157883
Equilibrium lattice constants for hcp Ni v005 view 154045


Linear thermal expansion coefficient of cubic crystal structures v001

Creators: Mingjian Wen
Contributor: Mwen
Publication Year: 2019
DOI: https://doi.org/10.25950/fc69d82d

This Test Driver uses LAMMPS to compute the linear thermal expansion coefficient at a finite temperature under a given pressure for a cubic lattice (fcc, bcc, sc, diamond) of a single given species.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Linear thermal expansion coefficient of bcc Cr at 293.15 K under a pressure of 0 MPa v001 view 20532884
Linear thermal expansion coefficient of bcc Fe at 293.15 K under a pressure of 0 MPa v001 view 9301141
Linear thermal expansion coefficient of fcc Al at 293.15 K under a pressure of 0 MPa v001 view 10562214
Linear thermal expansion coefficient of fcc Ni at 293.15 K under a pressure of 0 MPa v001 view 16580337


Stacking and twinning fault energies of an fcc lattice at zero temperature and pressure v002

Creators: Subrahmanyam Pattamatta
Contributor: SubrahmanyamPattamatta
Publication Year: 2019
DOI: https://doi.org/10.25950/b4cfaf9a

Intrinsic and extrinsic stacking fault energies, unstable stacking fault energy, unstable twinning energy, stacking fault energy as a function of fractional displacement, and gamma surface for a monoatomic FCC lattice at zero temperature and pressure.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Stacking and twinning fault energies for fcc Al v002 view 19088929
Stacking and twinning fault energies for fcc Ni v002 view 12687356


ElasticConstantsCubic__TD_011862047401_006

ElasticConstantsHexagonal__TD_612503193866_004

GrainBoundaryCubicCrystalSymmetricTiltRelaxedEnergyVsAngle__TD_410381120771_003
Test Error Categories Link to Error page
Relaxed energy as a function of tilt angle for a 100 symmetric tilt grain boundary in bcc Fe v001 other view
Relaxed energy as a function of tilt angle for a 110 symmetric tilt grain boundary in bcc Fe v001 other view
Relaxed energy as a function of tilt angle for a 111 symmetric tilt grain boundary in bcc Fe v001 other view
Relaxed energy as a function of tilt angle for a 112 symmetric tilt grain boundary in bcc Fe v001 other view
Relaxed energy as a function of tilt angle for a 110 symmetric tilt grain boundary in fcc Fe v001 other view
Relaxed energy as a function of tilt angle for a 111 symmetric tilt grain boundary in fcc Fe v001 other view
Relaxed energy as a function of tilt angle for a 112 symmetric tilt grain boundary in fcc Fe v001 other view

PhononDispersionCurve__TD_530195868545_004

SurfaceEnergyCubicCrystalBrokenBondFit__TD_955413365818_004

No Driver
Verification Check Error Categories Link to Error page
MemoryLeak__VC_561022993723_004 other view
PeriodicitySupport__VC_895061507745_004 other view




This Model requires a Model Driver. Archives for the Model Driver EAM_Dynamo__MD_120291908751_005 appear below.


EAM_Dynamo__MD_120291908751_005.txz Tar+XZ Linux and OS X archive
EAM_Dynamo__MD_120291908751_005.zip Zip Windows archive
Wiki is ready to accept new content.

Login to edit Wiki content