Jump to: Tests | Visualizers | Files | Wiki

EAM_Dynamo_Mendelev_Asta_AlMg__MO_658278549784_004

Interatomic potential for Aluminum (Al), Magnesium (Mg).
Use this Potential

Title
A single sentence description.
FS potential for Al-Mg
Description
A short description of the Model describing its key features including for example: type of model (pair potential, 3-body potential, EAM, etc.), modeled species (Ac, Ag, ..., Zr), intended purpose, origin, and so on.
FS potential to simulate solid-liquid interface properties in Al-Mg alloys. The potential properties are given in details in the paper.
Species
The supported atomic species.
Al, Mg
Disclaimer
A statement of applicability provided by the contributor, informing users of the intended use of this KIM Item.
None
Content Origin http://www.ctcms.nist.gov/potentials/Al.html
Contributor mendelev
Maintainer mendelev
Author Mikhail I. Mendelev
Publication Year 2018
Item Citation Click here to download this citation in BibTeX format.
Funding Not available
Short KIM ID
The unique KIM identifier code.
MO_658278549784_004
Extended KIM ID
The long form of the KIM ID including a human readable prefix (100 characters max), two underscores, and the Short KIM ID. Extended KIM IDs can only contain alpha-numeric characters (letters and digits) and underscores and must begin with a letter.
EAM_Dynamo_Mendelev_Asta_AlMg__MO_658278549784_004
Citable Link https://openkim.org/cite/MO_658278549784_004
KIM Item Type
Specifies whether this is a Portable Model (software implementation of an interatomic model); Portable Model with parameter file (parameter file to be read in by a Model Driver); Model Driver (software implementation of an interatomic model that reads in parameters).
Portable Model using Model Driver EAM_Dynamo__MD_120291908751_004
DriverEAM_Dynamo__MD_120291908751_004
KIM API Version1.6
Programming Language(s)
The programming languages used in the code and the percentage of the code written in each one. "N/A" means "not applicable" and refers to model parameterizations which only include parameter tables and have no programming language.
N/A
Previous Version EAM_Dynamo_Mendelev_Asta_AlMg__MO_658278549784_003

Verification Check Dashboard

(Click here to learn more about Verification Checks)

Grade Name Category Brief Description Full Results Aux File(s)
P vc-species-supported-as-stated mandatory
The model supports all species it claims to support; see full description.
Results Files
P vc-periodicity-support mandatory
Periodic boundary conditions are handled correctly; see full description.
Results Files
P vc-permutation-symmetry mandatory
Total energy and forces are unchanged when swapping atoms of the same species; see full description.
Results Files
B vc-forces-numerical-derivative consistency
Forces computed by the model agree with numerical derivatives of the energy; see full description.
Results Files
P vc-dimer-continuity-c1 informational
The energy versus separation relation of a pair of atoms is C1 continuous (i.e. the function and its first derivative are continuous); see full description.
Results Files
P vc-objectivity informational
Total energy is unchanged and forces transform correctly under rigid-body translation and rotation; see full description.
Results Files
P vc-inversion-symmetry informational
Total energy is unchanged and forces change sign when inverting a configuration through the origin; see full description.
Results Files
P vc-memory-leak informational
The model code does not have memory leaks (i.e. it releases all allocated memory at the end); see full description.
Results Files
P vc-thread-safe mandatory
The model returns the same energy and forces when computed in serial and when using parallel threads for a set of configurations. Note that this is not a guarantee of thread safety; see full description.
Results Files

Visualizers (in-page)


BCC Lattice Constant

This bar chart plot shows the mono-atomic body-centered cubic (bcc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

Cohesive Energy Graph

This graph shows the cohesive energy versus volume-per-atom for the current mode for four mono-atomic cubic phases (body-centered cubic (bcc), face-centered cubic (fcc), simple cubic (sc), and diamond). The curve with the lowest minimum is the ground state of the crystal if stable. (The crystal structure is enforced in these calculations, so the phase may not be stable.) Graphs are generated for each species supported by the model.

(No matching species)

Diamond Lattice Constant

This bar chart plot shows the mono-atomic face-centered diamond lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

FCC Elastic Constants

This bar chart plot shows the mono-atomic face-centered cubic (fcc) elastic constants predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

FCC Lattice Constant

This bar chart plot shows the mono-atomic face-centered cubic (fcc) lattice constant predicted by the current model (shown in red) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

FCC Stacking Fault Energies

This bar chart plot shows the intrinsic and extrinsic stacking fault energies as well as the unstable stacking and unstable twinning energies for face-centered cubic (fcc) predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

FCC Surface Energies

This bar chart plot shows the mono-atomic face-centered cubic (fcc) relaxed surface energies predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

SC Lattice Constant

This bar chart plot shows the mono-atomic simple cubic (sc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

Cubic Crystal Basic Properties Table

Species: Al

Species: Mg



Tests



Cohesive energy versus lattice constant curve for monoatomic cubic lattice

Authors: Daniel Karls
Contributor: karls
Publication Year: 2016
DOI: https://doi.org/

This Test Driver uses LAMMPS to compute the cohesive energy of a given monoatomic cubic
lattice (fcc, bcc, sc, or diamond) at a variety of lattice spacings. The lattice spacings
range from a_min (=a_min_frac*a_0) to a_max (=a_max_frac*a_0) where a_0, a_min_frac, and
a_max_frac are read from stdin (a_0 is typically approximately equal to the equilibrium lattice
constant). The precise scaling and number of lattice spacings sampled between a_min and a_0
(a_0 and a_max) is specified by two additional parameters passed from stdin: N_lower and
samplespacing_lower (N_upper and samplespacing_upper). Please see README.txt for further details.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Cohesive energy versus lattice constant curve for bcc Aluminum view 4343
Cohesive energy versus lattice constant curve for bcc Magnesium view 5383
Cohesive energy versus lattice constant curve for diamond Aluminum view 4414
Cohesive energy versus lattice constant curve for diamond Magnesium view 5383
Cohesive energy versus lattice constant curve for fcc Aluminum view 5419
Cohesive energy versus lattice constant curve for fcc Magnesium view 5024
Cohesive energy versus lattice constant curve for sc Aluminum view 4127
Cohesive energy versus lattice constant curve for sc Magnesium view 4020


Elastic constants for cubic crystals at zero temperature

Authors: Junhao Li
Contributor: jl2922
Publication Year: 2017
DOI: https://doi.org/

Measures the cubic elastic constants for some common crystal types (fcc, bcc, sc) by calculating the hessian of the energy density with respect to strain. Error estimate is reported due to the numerical differentiation.

This version fixes the number of repeats in the species key.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Elastic constants for bcc Al at zero temperature view 1615
Elastic constants for bcc Mg at zero temperature view 1938
Elastic constants for fcc Al at zero temperature view 1866
Elastic constants for fcc Mg at zero temperature view 1543
Elastic constants for sc Al at zero temperature view 1507
Elastic constants for sc Mg at zero temperature view 1364


Elastic constants for hexagonal crystals at zero temperature

Authors: Junhao Li
Contributor: jl2922
Publication Year: 2017
DOI: https://doi.org/

Measures the hexagonal elastic constants for hcp structure by calculating the hessian of the energy density with respect to strain. Error estimate is reported due to the numerical differentiation.

This version fixes the number of repeats in the species key and the coordinate of the 2nd atom in the normed basis.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Elastic constants for hcp Al at zero temperature view 1579
Elastic constants for hcp Mg at zero temperature view 1651


The relaxed energy as a function of tilt angle for a symmetric tilt grain boundary within a cubic crystal

Authors: Brandon Runnels
Contributor: brunnels
Publication Year: 2016
DOI: https://doi.org/

Compute grain boundary energy for a range of tilt angles given a crystal structure, tilt axis, and materials.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
The relaxed energy as a function of tilt angle for a 100 symmetric tilt grain boundary in fcc Al view 114826856


Equilibrium lattice constants for bulk cubic structures

Authors: Junhao Li
Contributor: jl2922
Publication Year: 2018
DOI: https://doi.org/

Equilibrium lattice constant and cohesive energy of a cubic lattice at zero temperature and pressure.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Equilibrium zero-temperature lattice constant for bcc Al view 682
Equilibrium zero-temperature lattice constant for bcc Mg view 790
Equilibrium zero-temperature lattice constant for diamond Al view 933
Equilibrium zero-temperature lattice constant for diamond Mg view 825
Equilibrium zero-temperature lattice constant for fcc Al view 790
Equilibrium zero-temperature lattice constant for fcc Mg view 825
Equilibrium zero-temperature lattice constant for sc Al view 646
Equilibrium zero-temperature lattice constant for sc Mg view 610


Equilibrium lattice constants for hexagonal bulk structures

Authors: Junhao Li
Contributor: jl2922
Publication Year: 2017
DOI: https://doi.org/

Calculates lattice constant by minimizing energy function.

This version fixes the output format problems in species and stress, and adds support for PURE and OPBC neighbor lists. The cell used for calculation is switched from a hexagonal one to an orthorhombic one to comply with the requirement of OPBC.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Equilibrium lattice constants for hcp Al view 5886
Equilibrium lattice constants for hcp Mg view 5204


Linear thermal expansion coefficient of a cubic crystal structure at a given temperature and pressure v000

Authors: Mingjian Wen
Contributor: Mwen
Publication Year: 2016
DOI: https://doi.org/

This Test Driver uses LAMMPS to compute the linear thermal expansion coefficient at a finite temperature under a given pressure for cubic lattice (fcc, bcc, sc, diamond) of a single given species.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Linear thermal expansion coefficient of fcc Al at room temperature under zero pressure view 6173482


Phonon dispersion relations for fcc lattices

Authors: Matt Bierbaum
Contributor: mattbierbaum
Publication Year: 2016
DOI: https://doi.org/

Calculates the phonon dispersion relations for fcc lattices and records the results as curves.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Phonon dispersion relations for fcc Al view 106877


Stacking and twinning fault energies for FCC crystals

Authors: Subrahmanyam Pattamatta
Contributor: SubrahmanyamPattamatta
Publication Year: 2018
DOI: https://doi.org/

Intrinsic and extrinsic stacking fault energies, unstable stacking fault energy, unstable twinning energy, stacking fault energy as a function of fractional displacement, and gamma surface for a monoatomic FCC lattice at zero temperature and pressure.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Stacking and twinning fault energies for fcc Al view 9070658


Broken-bond fit of high-symmetry surface energies in cubic crystal lattices

Authors: Matt Bierbaum
Contributor: mattbierbaum
Publication Year: 2017
DOI: https://doi.org/

Calculates the surface energy of several high symmetry surfaces and produces a broken bond model fit. In latex form, the fit equations are given by:

E_{FCC} (\vec{n}) = p_1 (4 \left( |x+y| + |x-y| + |x+z| + |x-z| + |z+y| +|z-y|\right)) + p_2 (8 \left( |x| + |y| + |z|\right)) + p_3 (2 ( |x+ 2y + z| + |x+2y-z| + |x-2y + z| + |x-2y-z| + |2x+y+z| + |2x+y-z| +|2x-y+z| +|2x-y-z| +|x+y+2z| +|x+y-2z| +|x-y+2z| +|x-y-2z| ) + c

E_{BCC} (\vec{n}) = p_1 (6 \left( | x+y+z| + |x+y-z| + |-x+y-z| + |x-y+z| \right)) + p_2 (8 \left( |x| + |y| + |z|\right)) + p_3 (4 \left( |x+y| + |x-y| + |x+z| + |x-z| + |z+y| +|z-y|\right)) +c.

In Python, these two fits take the form:
def BrokenBondFCC(params, index):

import numpy
x, y, z = index
x = x / numpy.sqrt(x**2.+y**2.+z**2.)
y = y / numpy.sqrt(x**2.+y**2.+z**2.)
z = z / numpy.sqrt(x**2.+y**2.+z**2.)

return params[0]*4* (abs(x+y) + abs(x-y) + abs(x+z) + abs(x-z) + abs(z+y) + abs(z-y)) + params[1]*8*(abs(x) + abs(y) + abs(z)) + params[2]*(abs(x+2*y+z) + abs(x+2*y-z) +abs(x-2*y+z) +abs(x-2*y-z) + abs(2*x+y+z) +abs(2*x+y-z) +abs(2*x-y+z) +abs(2*x-y-z) + abs(x+y+2*z) +abs(x+y-2*z) +abs(x-y+2*z) +abs(x-y-2*z))+params[3]

def BrokenBondBCC(params, x, y, z):


import numpy
x, y, z = index
x = x / numpy.sqrt(x**2.+y**2.+z**2.)
y = y / numpy.sqrt(x**2.+y**2.+z**2.)
z = z / numpy.sqrt(x**2.+y**2.+z**2.)

return params[0]*6*(abs(x+y+z) + abs(x-y-z) + abs(x-y+z) + abs(x+y-z)) + params[1]*8*(abs(x) + abs(y) + abs(z)) + params[2]*4* (abs(x+y) + abs(x-y) + abs(x+z) + abs(x-z) + abs(z+y) + abs(z-y)) + params[3]
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Broken-bond fit of high-symmetry surface energies in fcc Al view 48127


Monovacancy formation energy and relaxation volume for cubic and hcp monoatomic crystals

Authors: Junhao Li
Contributor: jl2922
Publication Year: 2018
DOI: https://doi.org/

Computes the monovacancy formation energy and relaxation volume for cubic and hcp monoatomic crystals.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Monovacancy formation energy and relaxation volume for fcc Al view 348123
Monovacancy formation energy and relaxation volume for hcp Mg view 345862


Vacancy formation and migration energies for cubic and hcp monoatomic crystals

Authors: Junhao Li
Contributor: jl2922
Publication Year: 2018
DOI: https://doi.org/

Computes the monovacancy formation and migration energies for cubic and hcp monoatomic crystals.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Vacancy formation and migration energy for fcc Al view 177579
Vacancy formation and migration energy for hcp Mg view 286394





Download Dependency

This Model requires a Model Driver. Archives for the Model Driver EAM_Dynamo__MD_120291908751_004 appear below.


EAM_Dynamo__MD_120291908751_004.txz Tar+XZ Linux and OS X archive
EAM_Dynamo__MD_120291908751_004.zip Zip Windows archive

Wiki

Wiki is ready to accept new content.

Login to edit Wiki content