Jump to: Tests | Visualizers | Files | Wiki

EAM_IMD_BrommerGaehler_2006B_AlNiCo__MO_128037485276_003

Interatomic potential for Aluminum (Al), Cobalt (Co), Nickel (Ni).
Use this Potential

Title
A single sentence description.
EAM potential (IMD tabulation) for the Al-Ni-Co system for quasicrystals developed by Brommer and Gaehler (2006); Potential B v003
Description
A short description of the Model describing its key features including for example: type of model (pair potential, 3-body potential, EAM, etc.), modeled species (Ac, Ag, ..., Zr), intended purpose, origin, and so on.
Classical effective potentials are indispensable for any large-scale atomistic simulations, and the relevance of simulation results crucially depends on the quality of the potentials used. For complex alloys such as quasicrystals, however, realistic effective potentials are almost non-existent. We report here our efforts to develop effective potentials especially for quasicrystalline alloy systems. We use the so-called force-matching method, in which the potential parameters are adapted so as to reproduce the forces and energies optimally in a set of suitably chosen reference configurations. These reference data are calculated with ab-initio methods. As a first application, embedded-atom method potentials for decagonal Al–Ni–Co, icosahedral Ca–Cd, and both icosahedral and decagonal Mg–Zn quasicrystals have been constructed. The influence of the potential range and degree of specialization on the accuracy and other properties is discussed and compared.
Species
The supported atomic species.
Al, Co, Ni
Disclaimer
A statement of applicability provided by the contributor, informing users of the intended use of this KIM Item.
None
Contributor Daniel Schopf
Maintainer Daniel Schopf
Publication Year 2018
How to Cite

This Model originally published in [1] is archived in OpenKIM [2-5].

[1] Brommer P, Gähler F. Effective potentials for quasicrystals from ab-initio data. Philosophical Magazine. 2006;86(6-8):753–8. doi:10.1080/14786430500333349 — (Primary Source) A primary source is a reference directly related to the item documenting its development, as opposed to other sources that are provided as background information.

[2] EAM potential (IMD tabulation) for the Al-Ni-Co system for quasicrystals developed by Brommer and Gaehler (2006); Potential B v003. OpenKIM; 2018. doi:10.25950/a978894d

[3] EAM implementation from the IMD code v003. OpenKIM; 2018. doi:10.25950/e28996e9

[4] Tadmor EB, Elliott RS, Sethna JP, Miller RE, Becker CA. The potential of atomistic simulations and the Knowledgebase of Interatomic Models. JOM. 2011;63(7):17. doi:10.1007/s11837-011-0102-6

[5] Elliott RS, Tadmor EB. Knowledgebase of Interatomic Models (KIM) Application Programming Interface (API). OpenKIM; 2011. doi:10.25950/ff8f563a

Click here to download the above citation in BibTeX format.
Funding Not available
Short KIM ID
The unique KIM identifier code.
MO_128037485276_003
Extended KIM ID
The long form of the KIM ID including a human readable prefix (100 characters max), two underscores, and the Short KIM ID. Extended KIM IDs can only contain alpha-numeric characters (letters and digits) and underscores and must begin with a letter.
EAM_IMD_BrommerGaehler_2006B_AlNiCo__MO_128037485276_003
DOI 10.25950/a978894d
https://doi.org/10.25950/a978894d
https://search.datacite.org/works/10.25950/a978894d
KIM Item Type
Specifies whether this is a Portable Model (software implementation of an interatomic model); Portable Model with parameter file (parameter file to be read in by a Model Driver); Model Driver (software implementation of an interatomic model that reads in parameters).
Portable Model using Model Driver EAM_IMD__MD_113599595631_003
DriverEAM_IMD__MD_113599595631_003
KIM API Version2.0
Potential Type eam
Previous Version EAM_IMD_BrommerGaehler_2006B_AlNiCo__MO_128037485276_002

Verification Check Dashboard

(Click here to learn more about Verification Checks)

Grade Name Category Brief Description Full Results Aux File(s)
P vc-species-supported-as-stated mandatory
The model supports all species it claims to support; see full description.
Results Files
P vc-periodicity-support mandatory
Periodic boundary conditions are handled correctly; see full description.
Results Files
P vc-permutation-symmetry mandatory
Total energy and forces are unchanged when swapping atoms of the same species; see full description.
Results Files
F vc-forces-numerical-derivative consistency
Forces computed by the model agree with numerical derivatives of the energy; see full description.
Results Files
F vc-dimer-continuity-c1 informational
The energy versus separation relation of a pair of atoms is C1 continuous (i.e. the function and its first derivative are continuous); see full description.
Results Files
P vc-objectivity informational
Total energy is unchanged and forces transform correctly under rigid-body translation and rotation; see full description.
Results Files
P vc-inversion-symmetry informational
Total energy is unchanged and forces change sign when inverting a configuration through the origin; see full description.
Results Files
P vc-memory-leak informational
The model code does not have memory leaks (i.e. it releases all allocated memory at the end); see full description.
Results Files
P vc-thread-safe mandatory
The model returns the same energy and forces when computed in serial and when using parallel threads for a set of configurations. Note that this is not a guarantee of thread safety; see full description.
Results Files
N/A vc-unit-conversion mandatory
The model is able to correctly convert its energy and/or forces to different unit sets; see full description.
Results Files

Visualizers (in-page)


BCC Lattice Constant

This bar chart plot shows the mono-atomic body-centered cubic (bcc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Co
Species: Al
Species: Ni


Cohesive Energy Graph

This graph shows the cohesive energy versus volume-per-atom for the current mode for four mono-atomic cubic phases (body-centered cubic (bcc), face-centered cubic (fcc), simple cubic (sc), and diamond). The curve with the lowest minimum is the ground state of the crystal if stable. (The crystal structure is enforced in these calculations, so the phase may not be stable.) Graphs are generated for each species supported by the model.

Species: Al
Species: Co
Species: Ni


Diamond Lattice Constant

This bar chart plot shows the mono-atomic face-centered diamond lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Al
Species: Ni
Species: Co


FCC Elastic Constants

This bar chart plot shows the mono-atomic face-centered cubic (fcc) elastic constants predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Al
Species: Co
Species: Ni


FCC Lattice Constant

This bar chart plot shows the mono-atomic face-centered cubic (fcc) lattice constant predicted by the current model (shown in red) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Ni
Species: Co
Species: Al


FCC Stacking Fault Energies

This bar chart plot shows the intrinsic and extrinsic stacking fault energies as well as the unstable stacking and unstable twinning energies for face-centered cubic (fcc) predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Ni
Species: Al


FCC Surface Energies

This bar chart plot shows the mono-atomic face-centered cubic (fcc) relaxed surface energies predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Al
Species: Ni


SC Lattice Constant

This bar chart plot shows the mono-atomic simple cubic (sc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Co
Species: Al
Species: Ni


Cubic Crystal Basic Properties Table

Species: Al

Species: Co

Species: Ni



Tests



Cohesive energy versus lattice constant curve for monoatomic cubic lattices v003

Creators: Daniel S. Karls
Contributor: karls
Publication Year: 2019
DOI: https://doi.org/10.25950/64cb38c5

This Test Driver uses LAMMPS to compute the cohesive energy of a given monoatomic cubic lattice (fcc, bcc, sc, or diamond) at a variety of lattice spacings. The lattice spacings range from a_min (=a_min_frac*a_0) to a_max (=a_max_frac*a_0) where a_0, a_min_frac, and a_max_frac are read from stdin (a_0 is typically approximately equal to the equilibrium lattice constant). The precise scaling and number of lattice spacings sampled between a_min and a_0 (a_0 and a_max) is specified by two additional parameters passed from stdin: N_lower and samplespacing_lower (N_upper and samplespacing_upper). Please see README.txt for further details.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Cohesive energy versus lattice constant curve for bcc Al v003 view 10364
Cohesive energy versus lattice constant curve for bcc Co v003 view 10045
Cohesive energy versus lattice constant curve for bcc Ni v003 view 10013
Cohesive energy versus lattice constant curve for diamond Al v003 view 10173
Cohesive energy versus lattice constant curve for diamond Co v003 view 10077
Cohesive energy versus lattice constant curve for diamond Ni v003 view 10364
Cohesive energy versus lattice constant curve for fcc Al v003 view 11004
Cohesive energy versus lattice constant curve for fcc Co v003 view 10460
Cohesive energy versus lattice constant curve for fcc Ni v003 view 10588
Cohesive energy versus lattice constant curve for sc Al v003 view 10396
Cohesive energy versus lattice constant curve for sc Co v003 view 10812
Cohesive energy versus lattice constant curve for sc Ni v003 view 10428


Elastic constants for cubic crystals at zero temperature and pressure v006

Creators: Junhao Li and Ellad Tadmor
Contributor: tadmor
Publication Year: 2019
DOI: https://doi.org/10.25950/5853fb8f

Computes the cubic elastic constants for some common crystal types (fcc, bcc, sc, diamond) by calculating the hessian of the energy density with respect to strain. An estimate of the error associated with the numerical differentiation performed is reported.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Elastic constants for bcc Al at zero temperature v006 view 2303
Elastic constants for bcc Co at zero temperature v006 view 2143
Elastic constants for bcc Ni at zero temperature v006 view 6494
Elastic constants for diamond Co at zero temperature v001 view 9885
Elastic constants for diamond Ni at zero temperature v001 view 5982
Elastic constants for fcc Al at zero temperature v006 view 1983
Elastic constants for fcc Co at zero temperature v006 view 2367
Elastic constants for fcc Ni at zero temperature v006 view 3935
Elastic constants for sc Al at zero temperature v006 view 2111
Elastic constants for sc Co at zero temperature v006 view 3615
Elastic constants for sc Ni at zero temperature v006 view 3935


Elastic constants for hexagonal crystals at zero temperature v004

Creators: Junhao Li
Contributor: jl2922
Publication Year: 2019
DOI: https://doi.org/10.25950/d794c746

Computes the elastic constants for hcp crystals by calculating the hessian of the energy density with respect to strain. An estimate of the error associated with the numerical differentiation performed is reported.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Elastic constants for hcp Al at zero temperature v004 view 2069
Elastic constants for hcp Co at zero temperature v004 view 2038
Elastic constants for hcp Ni at zero temperature v004 view 1910


Relaxed energy as a function of tilt angle for a symmetric tilt grain boundary within a cubic crystal v002

Creators: Brandon Runnels
Contributor: brunnels
Publication Year: 2019
DOI: https://doi.org/10.25950/4723cee7

Computes grain boundary energy for a range of tilt angles given a crystal structure, tilt axis, and material.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Relaxed energy as a function of tilt angle for a 100 symmetric tilt grain boundary in fcc Al v002 view 5691101
Relaxed energy as a function of tilt angle for a 100 symmetric tilt grain boundary in fcc Ni v000 view 2021098
Relaxed energy as a function of tilt angle for a 110 symmetric tilt grain boundary in fcc Al v000 view 15838098
Relaxed energy as a function of tilt angle for a 110 symmetric tilt grain boundary in fcc Ni v000 view 5220737
Relaxed energy as a function of tilt angle for a 111 symmetric tilt grain boundary in fcc Al v000 view 7865522
Relaxed energy as a function of tilt angle for a 111 symmetric tilt grain boundary in fcc Ni v000 view 2277409
Relaxed energy as a function of tilt angle for a 112 symmetric tilt grain boundary in fcc Al v000 view 30422401
Relaxed energy as a function of tilt angle for a 112 symmetric tilt grain boundary in fcc Ni v000 view 7637471


Equilibrium lattice constant and cohesive energy of a cubic lattice at zero temperature and pressure v007

Creators: Daniel S. Karls and Junhao Li
Contributor: karls
Publication Year: 2019
DOI: https://doi.org/10.25950/2765e3bf

Equilibrium lattice constant and cohesive energy of a cubic lattice at zero temperature and pressure.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Equilibrium zero-temperature lattice constant for bcc Al v007 view 3423
Equilibrium zero-temperature lattice constant for bcc Co v007 view 3423
Equilibrium zero-temperature lattice constant for bcc Ni v007 view 3615
Equilibrium zero-temperature lattice constant for diamond Al v007 view 3487
Equilibrium zero-temperature lattice constant for diamond Co v007 view 4606
Equilibrium zero-temperature lattice constant for diamond Ni v007 view 4862
Equilibrium zero-temperature lattice constant for fcc Al v007 view 5534
Equilibrium zero-temperature lattice constant for fcc Co v007 view 5054
Equilibrium zero-temperature lattice constant for fcc Ni v007 view 3903
Equilibrium zero-temperature lattice constant for sc Al v007 view 3871
Equilibrium zero-temperature lattice constant for sc Co v007 view 3455
Equilibrium zero-temperature lattice constant for sc Ni v007 view 3775


Equilibrium lattice constants for hexagonal bulk structures at zero temperature and pressure v005

Creators: Daniel S. Karls and Junhao Li
Contributor: karls
Publication Year: 2019
DOI: https://doi.org/10.25950/c339ca32

Calculates lattice constant of hexagonal bulk structures at zero temperature and pressure by using simplex minimization to minimize the potential energy.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Equilibrium lattice constants for hcp Al v005 view 45080
Equilibrium lattice constants for hcp Co v005 view 34383
Equilibrium lattice constants for hcp Ni v005 view 32377


Linear thermal expansion coefficient of cubic crystal structures v001

Creators: Mingjian Wen
Contributor: Mwen
Publication Year: 2019
DOI: https://doi.org/10.25950/fc69d82d

This Test Driver uses LAMMPS to compute the linear thermal expansion coefficient at a finite temperature under a given pressure for a cubic lattice (fcc, bcc, sc, diamond) of a single given species.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Linear thermal expansion coefficient of fcc Al at 293.15 K under a pressure of 0 MPa v001 view 9464489


Phonon dispersion relations for an fcc lattice v004

Creators: Matt Bierbaum
Contributor: mattbierbaum
Publication Year: 2019
DOI: https://doi.org/10.25950/64f4999b

Calculates the phonon dispersion relations for fcc lattices and records the results as curves.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Phonon dispersion relations for fcc Al v004 view 52238
Phonon dispersion relations for fcc Ni v004 view 49711


Stacking and twinning fault energies of an fcc lattice at zero temperature and pressure v002

Creators: Subrahmanyam Pattamatta
Contributor: SubrahmanyamPattamatta
Publication Year: 2019
DOI: https://doi.org/10.25950/b4cfaf9a

Intrinsic and extrinsic stacking fault energies, unstable stacking fault energy, unstable twinning energy, stacking fault energy as a function of fractional displacement, and gamma surface for a monoatomic FCC lattice at zero temperature and pressure.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Stacking and twinning fault energies for fcc Al v002 view 10131652
Stacking and twinning fault energies for fcc Ni v002 view 112761


High-symmetry surface energies in cubic lattices and broken bond model v004

Creators: Matt Bierbaum
Contributor: mattbierbaum
Publication Year: 2019
DOI: https://doi.org/10.25950/6c43a4e6

Calculates the surface energy of several high symmetry surfaces and produces a broken-bond model fit. In latex form, the fit equations are given by:

E_{FCC} (\vec{n}) = p_1 (4 \left( |x+y| + |x-y| + |x+z| + |x-z| + |z+y| +|z-y|\right)) + p_2 (8 \left( |x| + |y| + |z|\right)) + p_3 (2 ( |x+ 2y + z| + |x+2y-z| + |x-2y + z| + |x-2y-z| + |2x+y+z| + |2x+y-z| +|2x-y+z| +|2x-y-z| +|x+y+2z| +|x+y-2z| +|x-y+2z| +|x-y-2z| ) + c

E_{BCC} (\vec{n}) = p_1 (6 \left( | x+y+z| + |x+y-z| + |-x+y-z| + |x-y+z| \right)) + p_2 (8 \left( |x| + |y| + |z|\right)) + p_3 (4 \left( |x+y| + |x-y| + |x+z| + |x-z| + |z+y| +|z-y|\right)) +c.

In Python, these two fits take the following form:

def BrokenBondFCC(params, index):

import numpy
x, y, z = index
x = x / numpy.sqrt(x**2.+y**2.+z**2.)
y = y / numpy.sqrt(x**2.+y**2.+z**2.)
z = z / numpy.sqrt(x**2.+y**2.+z**2.)

return params[0]*4* (abs(x+y) + abs(x-y) + abs(x+z) + abs(x-z) + abs(z+y) + abs(z-y)) + params[1]*8*(abs(x) + abs(y) + abs(z)) + params[2]*(abs(x+2*y+z) + abs(x+2*y-z) +abs(x-2*y+z) +abs(x-2*y-z) + abs(2*x+y+z) +abs(2*x+y-z) +abs(2*x-y+z) +abs(2*x-y-z) + abs(x+y+2*z) +abs(x+y-2*z) +abs(x-y+2*z) +abs(x-y-2*z))+params[3]

def BrokenBondBCC(params, x, y, z):


import numpy
x, y, z = index
x = x / numpy.sqrt(x**2.+y**2.+z**2.)
y = y / numpy.sqrt(x**2.+y**2.+z**2.)
z = z / numpy.sqrt(x**2.+y**2.+z**2.)

return params[0]*6*(abs(x+y+z) + abs(x-y-z) + abs(x-y+z) + abs(x+y-z)) + params[1]*8*(abs(x) + abs(y) + abs(z)) + params[2]*4* (abs(x+y) + abs(x-y) + abs(x+z) + abs(x-z) + abs(z+y) + abs(z-y)) + params[3]
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Broken-bond fit of high-symmetry surface energies in fcc Al v004 view 37075
Broken-bond fit of high-symmetry surface energies in fcc Ni v004 view 1452237





Download Dependency

This Model requires a Model Driver. Archives for the Model Driver EAM_IMD__MD_113599595631_003 appear below.


EAM_IMD__MD_113599595631_003.txz Tar+XZ Linux and OS X archive
EAM_IMD__MD_113599595631_003.zip Zip Windows archive

Wiki

Wiki is ready to accept new content.

Login to edit Wiki content