Jump to: Tests | Visualizers | Files | Wiki

IMD_EAM_Schopf_AlNiCo_B__MO_128037485276_002

Interatomic potential for Aluminum (Al), Cobalt (Co), Nickel (Ni).
Use this Potential

Title
A single sentence description.
AlNiCo potential for the IMD_EAM model driver.
Description
A short description of the Model describing its key features including for example: type of model (pair potential, 3-body potential, EAM, etc.), modeled species (Ac, Ag, ..., Zr), intended purpose, origin, and so on.
AlNiCo EAM potential for the IMD EAM model driver, fitted for quasicrystal approximants.
Species
The supported atomic species.
Al, Co, Ni
Disclaimer
A statement of applicability provided by the contributor, informing users of the intended use of this KIM Item.
None
Contributor Daniel Schopf
Maintainer Daniel Schopf
Published on KIM 2016
How to Cite Click here to download this citation in BibTeX format.
Funding Not available
Short KIM ID
The unique KIM identifier code.
MO_128037485276_002
Extended KIM ID
The long form of the KIM ID including a human readable prefix (100 characters max), two underscores, and the Short KIM ID. Extended KIM IDs can only contain alpha-numeric characters (letters and digits) and underscores and must begin with a letter.
IMD_EAM_Schopf_AlNiCo_B__MO_128037485276_002
Citable Link https://openkim.org/cite/MO_128037485276_002
KIM Item Type
Specifies whether this is a Portable Model (software implementation of an interatomic model); Portable Model with parameter file (parameter file to be read in by a Model Driver); Model Driver (software implementation of an interatomic model that reads in parameters).
Portable Model using Model Driver IMD_EAM__MD_113599595631_002
DriverIMD_EAM__MD_113599595631_002
KIM API Version1.6
Previous Version IMD_EAM_Schopf_AlNiCo_B__MO_128037485276_001

(Click here to learn more about Verification Checks)

Grade Name Category Brief Description Full Results Aux File(s)
P vc-species-supported-as-stated mandatory
The model supports all species it claims to support; see full description.
Results Files
P vc-periodicity-support mandatory
Periodic boundary conditions are handled correctly; see full description.
Results Files
P vc-permutation-symmetry mandatory
Total energy and forces are unchanged when swapping atoms of the same species; see full description.
Results Files
F vc-forces-numerical-derivative consistency
Forces computed by the model agree with numerical derivatives of the energy; see full description.
Results Files
F vc-dimer-continuity-c1 informational
The energy versus separation relation of a pair of atoms is C1 continuous (i.e. the function and its first derivative are continuous); see full description.
Results Files
P vc-objectivity informational
Total energy is unchanged and forces transform correctly under rigid-body translation and rotation; see full description.
Results Files
P vc-inversion-symmetry informational
Total energy is unchanged and forces change sign when inverting a configuration through the origin; see full description.
Results Files
F vc-memory-leak informational
The model code does not have memory leaks (i.e. it releases all allocated memory at the end); see full description.
Results Files
P vc-thread-safe mandatory
The model returns the same energy and forces when computed in serial and when using parallel threads for a set of configurations. Note that this is not a guarantee of thread safety; see full description.
Results Files


BCC Lattice Constant

This bar chart plot shows the mono-atomic body-centered cubic (bcc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

Cohesive Energy Graph

This graph shows the cohesive energy versus volume-per-atom for the current mode for four mono-atomic cubic phases (body-centered cubic (bcc), face-centered cubic (fcc), simple cubic (sc), and diamond). The curve with the lowest minimum is the ground state of the crystal if stable. (The crystal structure is enforced in these calculations, so the phase may not be stable.) Graphs are generated for each species supported by the model.

(No matching species)

Diamond Lattice Constant

This bar chart plot shows the mono-atomic face-centered diamond lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

Dislocation Core Energies

This graph shows the dislocation core energy of a cubic crystal at zero temperature and pressure for a specific set of dislocation core cutoff radii. After obtaining the total energy of the system from conjugate gradient minimizations, non-singular, isotropic and anisotropic elasticity are applied to obtain the dislocation core energy for each of these supercells with different dipole distances. Graphs are generated for each species supported by the model.

(No matching species)

FCC Elastic Constants

This bar chart plot shows the mono-atomic face-centered cubic (fcc) elastic constants predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

FCC Lattice Constant

This bar chart plot shows the mono-atomic face-centered cubic (fcc) lattice constant predicted by the current model (shown in red) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

FCC Stacking Fault Energies

This bar chart plot shows the intrinsic and extrinsic stacking fault energies as well as the unstable stacking and unstable twinning energies for face-centered cubic (fcc) predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

FCC Surface Energies

This bar chart plot shows the mono-atomic face-centered cubic (fcc) relaxed surface energies predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

SC Lattice Constant

This bar chart plot shows the mono-atomic simple cubic (sc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

Cubic Crystal Basic Properties Table

Species: Al

Species: Co

Species: Ni





Cohesive energy versus lattice constant curve for monoatomic cubic lattice

Creators: Daniel Karls
Contributor: karls
Publication Year: 2016
DOI: https://doi.org/

This Test Driver uses LAMMPS to compute the cohesive energy of a given monoatomic cubic
lattice (fcc, bcc, sc, or diamond) at a variety of lattice spacings. The lattice spacings
range from a_min (=a_min_frac*a_0) to a_max (=a_max_frac*a_0) where a_0, a_min_frac, and
a_max_frac are read from stdin (a_0 is typically approximately equal to the equilibrium lattice
constant). The precise scaling and number of lattice spacings sampled between a_min and a_0
(a_0 and a_max) is specified by two additional parameters passed from stdin: N_lower and
samplespacing_lower (N_upper and samplespacing_upper). Please see README.txt for further details.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Cohesive energy versus lattice constant curve for bcc Aluminum view 18758
Cohesive energy versus lattice constant curve for bcc Cobalt view 18758
Cohesive energy versus lattice constant curve for bcc Nickel view 114248
Cohesive energy versus lattice constant curve for diamond Aluminum view 18758
Cohesive energy versus lattice constant curve for diamond Cobalt view 18656
Cohesive energy versus lattice constant curve for diamond Nickel view 19166
Cohesive energy versus lattice constant curve for fcc Aluminum view 19183
Cohesive energy versus lattice constant curve for fcc Cobalt view 110095
Cohesive energy versus lattice constant curve for fcc Nickel view 19538
Cohesive energy versus lattice constant curve for sc Aluminum view 18758
Cohesive energy versus lattice constant curve for sc Cobalt view 18928
Cohesive energy versus lattice constant curve for sc Nickel view 18792


Elastic constants for cubic crystals at zero temperature

Creators: Junhao Li
Contributor: jl2922
Publication Year: 2017
DOI: https://doi.org/

Measures the cubic elastic constants for some common crystal types (fcc, bcc, sc) by calculating the hessian of the energy density with respect to strain. Error estimate is reported due to the numerical differentiation.

This version fixes the number of repeats in the species key.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Elastic constants for bcc Al at zero temperature view 2272
Elastic constants for bcc Co at zero temperature view 2306
Elastic constants for bcc Ni at zero temperature view 2134
Elastic constants for fcc Al at zero temperature view 2272
Elastic constants for fcc Co at zero temperature view 2237
Elastic constants for fcc Ni at zero temperature view 2375
Elastic constants for sc Al at zero temperature view 2237
Elastic constants for sc Co at zero temperature view 2065
Elastic constants for sc Ni at zero temperature view 2099


Classical and first strain gradient elastic constants for simple lattices

Creators: Nikhil Chandra Admal
Contributor: Admal
Publication Year: 2016
DOI: https://doi.org/

The isothermal classical and first strain gradient elastic constants for a crystal at 0 K and zero stress.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Classical and first strain gradient elastic constants for fcc aluminum view 1414


Elastic constants for hexagonal crystals at zero temperature

Creators: Junhao Li
Contributor: jl2922
Publication Year: 2017
DOI: https://doi.org/

Measures the hexagonal elastic constants for hcp structure by calculating the hessian of the energy density with respect to strain. Error estimate is reported due to the numerical differentiation.

This version fixes the number of repeats in the species key and the coordinate of the 2nd atom in the normed basis.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Elastic constants for hcp Al at zero temperature view 1651
Elastic constants for hcp Co at zero temperature view 1579
Elastic constants for hcp Ni at zero temperature view 1938


Equilibrium lattice constants for bulk cubic structures

Creators: Junhao Li
Contributor: jl2922
Publication Year: 2018
DOI: https://doi.org/

Equilibrium lattice constant and cohesive energy of a cubic lattice at zero temperature and pressure.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Equilibrium zero-temperature lattice constant for bcc Al view 1835
Equilibrium zero-temperature lattice constant for bcc Co view 1652
Equilibrium zero-temperature lattice constant for bcc Ni view 1799
Equilibrium zero-temperature lattice constant for diamond Al view 1755
Equilibrium zero-temperature lattice constant for diamond Co view 1927
Equilibrium zero-temperature lattice constant for diamond Ni view 2231
Equilibrium zero-temperature lattice constant for fcc Al view 1342
Equilibrium zero-temperature lattice constant for fcc Co view 14662
Equilibrium zero-temperature lattice constant for fcc Ni view 16371
Equilibrium zero-temperature lattice constant for sc Al view 12700
Equilibrium zero-temperature lattice constant for sc Co view 16479
Equilibrium zero-temperature lattice constant for sc Ni view 14716


Equilibrium lattice constants for hexagonal bulk structures

Creators: Junhao Li
Contributor: jl2922
Publication Year: 2017
DOI: https://doi.org/

Calculates lattice constant by minimizing energy function.

This version fixes the output format problems in species and stress, and adds support for PURE and OPBC neighbor lists. The cell used for calculation is switched from a hexagonal one to an orthorhombic one to comply with the requirement of OPBC.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Equilibrium lattice constants for hcp Al view 9396
Equilibrium lattice constants for hcp Co view 8170
Equilibrium lattice constants for hcp Ni view 8000


Phonon dispersion relations for fcc lattices

Creators: Matt Bierbaum
Contributor: mattbierbaum
Publication Year: 2016
DOI: https://doi.org/

Calculates the phonon dispersion relations for fcc lattices and records the results as curves.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Phonon dispersion relations for fcc Al view 187934
Phonon dispersion relations for fcc Ni view 1391990


Broken-bond fit of high-symmetry surface energies in cubic crystal lattices

Creators: Matt Bierbaum
Contributor: mattbierbaum
Publication Year: 2017
DOI: https://doi.org/

Calculates the surface energy of several high symmetry surfaces and produces a broken bond model fit. In latex form, the fit equations are given by:

E_{FCC} (\vec{n}) = p_1 (4 \left( |x+y| + |x-y| + |x+z| + |x-z| + |z+y| +|z-y|\right)) + p_2 (8 \left( |x| + |y| + |z|\right)) + p_3 (2 ( |x+ 2y + z| + |x+2y-z| + |x-2y + z| + |x-2y-z| + |2x+y+z| + |2x+y-z| +|2x-y+z| +|2x-y-z| +|x+y+2z| +|x+y-2z| +|x-y+2z| +|x-y-2z| ) + c

E_{BCC} (\vec{n}) = p_1 (6 \left( | x+y+z| + |x+y-z| + |-x+y-z| + |x-y+z| \right)) + p_2 (8 \left( |x| + |y| + |z|\right)) + p_3 (4 \left( |x+y| + |x-y| + |x+z| + |x-z| + |z+y| +|z-y|\right)) +c.

In Python, these two fits take the form:
def BrokenBondFCC(params, index):

import numpy
x, y, z = index
x = x / numpy.sqrt(x**2.+y**2.+z**2.)
y = y / numpy.sqrt(x**2.+y**2.+z**2.)
z = z / numpy.sqrt(x**2.+y**2.+z**2.)

return params[0]*4* (abs(x+y) + abs(x-y) + abs(x+z) + abs(x-z) + abs(z+y) + abs(z-y)) + params[1]*8*(abs(x) + abs(y) + abs(z)) + params[2]*(abs(x+2*y+z) + abs(x+2*y-z) +abs(x-2*y+z) +abs(x-2*y-z) + abs(2*x+y+z) +abs(2*x+y-z) +abs(2*x-y+z) +abs(2*x-y-z) + abs(x+y+2*z) +abs(x+y-2*z) +abs(x-y+2*z) +abs(x-y-2*z))+params[3]

def BrokenBondBCC(params, x, y, z):


import numpy
x, y, z = index
x = x / numpy.sqrt(x**2.+y**2.+z**2.)
y = y / numpy.sqrt(x**2.+y**2.+z**2.)
z = z / numpy.sqrt(x**2.+y**2.+z**2.)

return params[0]*6*(abs(x+y+z) + abs(x-y-z) + abs(x-y+z) + abs(x+y-z)) + params[1]*8*(abs(x) + abs(y) + abs(z)) + params[2]*4* (abs(x+y) + abs(x-y) + abs(x+z) + abs(x-z) + abs(z+y) + abs(z-y)) + params[3]
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Broken-bond fit of high-symmetry surface energies in fcc Al view 69636
Broken-bond fit of high-symmetry surface energies in fcc Ni view 304576


Monovacancy formation energy and relaxation volume for cubic and hcp monoatomic crystals

Creators: Junhao Li
Contributor: jl2922
Publication Year: 2018
DOI: https://doi.org/

Computes the monovacancy formation energy and relaxation volume for cubic and hcp monoatomic crystals.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Monovacancy formation energy and relaxation volume for fcc Al view 574489


Vacancy formation and migration energies for cubic and hcp monoatomic crystals

Creators:
Contributor: jl2922
Publication Year: 2018
DOI: https://doi.org/

Computes the monovacancy formation and migration energies for cubic and hcp monoatomic crystals.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Vacancy formation and migration energy for fcc Al view 247286
Vacancy formation and migration energy for fcc Ni view 681801





This Model requires a Model Driver. Archives for the Model Driver IMD_EAM__MD_113599595631_002 appear below.


IMD_EAM__MD_113599595631_002.txz Tar+XZ Linux and OS X archive
IMD_EAM__MD_113599595631_002.zip Zip Windows archive
Wiki is ready to accept new content.

Login to edit Wiki content