Jump to: Models | Files | Wiki

LatticeConstantHexagonalEnergy_hcp_Zn__TE_018064221004_004

Title
A single sentence description.
Equilibrium lattice constants for hcp Zn
Description Computes the equilibrium lattice constants for hcp Zn at zero temperature and pressure using simplex minimization.
Species
The supported atomic species.
Zn
Disclaimer
A statement of applicability provided by the contributor, informing users of the intended use of this KIM Item.
Computer generated
Contributor Junhao Li
Maintainer Junhao Li
Published on KIM 2018
How to Cite Click here to download this citation in BibTeX format.
Funding Not available
Short KIM ID
The unique KIM identifier code.
TE_018064221004_004
Extended KIM ID
The long form of the KIM ID including a human readable prefix (100 characters max), two underscores, and the Short KIM ID. Extended KIM IDs can only contain alpha-numeric characters (letters and digits) and underscores and must begin with a letter.
LatticeConstantHexagonalEnergy_hcp_Zn__TE_018064221004_004
Citable Link https://openkim.org/cite/TE_018064221004_004
KIM Item TypeTest
DriverLatticeConstantHexagonalEnergy__TD_942334626465_004
Properties
Properties as defined in kimspec.edn. These properties are inhereted from the Test Driver.
KIM API Version2.0
Simulator Name
The name of the simulator as defined in kimspec.edn. This Simulator Name is inhereted from the Test Driver.
ase
Programming Language(s)
The programming languages used in the code and the percentage of the code written in each one.
100.00% Python
Previous Version LatticeConstantHexagonalEnergy_hcp_Zn__TE_018064221004_003


EAM_IMD__MD_113599595631_003
Model Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
EAM_IMD_BrommerBoissieuEuchner_2009_MgZn__MO_710767216198_003 view 14478
LJ__MD_414112407348_003
Model Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
LJ_ElliottAkerson_2015_Universal__MO_959249795837_003 view 553607
SW__MD_335816936951_004
Model Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
SW_ZhouWardMartin_2013_CdTeZnSeHgS__MO_503261197030_002 view 9237
Tersoff_LAMMPS__MD_077075034781_003
Model Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Tersoff_LAMMPS_ErhartJuslinGoy_2006_ZnO__MO_616776018688_002 view 4941
No Driver
Model Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Sim_LAMMPS_BOP_WardZhouWong_2012_CdZnTe__SM_409035133405_000 view 144518
Sim_LAMMPS_BOP_WardZhouWong_2013_CdZnTe__SM_010061267051_000 view 118884





This Test requires a Test Driver. Archives for the Test Driver LatticeConstantHexagonalEnergy__TD_942334626465_004 appear below.


LatticeConstantHexagonalEnergy__TD_942334626465_004.txz Tar+XZ Linux and OS X archive
LatticeConstantHexagonalEnergy__TD_942334626465_004.zip Zip Windows archive
Wiki is ready to accept new content.

Login to edit Wiki content