Jump to: Tests | Visualizers | Files | Wiki

MEAM_LAMMPS_ChoiJoSohn_2018_CoNiCrFeMn__MO_115454747503_001

Interatomic potential for Chromium (Cr), Cobalt (Co), Iron (Fe), Manganese (Mn), Nickel (Ni).
Use this Potential

Title
A single sentence description.
MEAM Potential for the Co-Ni-Cr-Fe-Mn system developed by Choi et al., (2018) v001
Citations

This panel presents the list of papers that cite the interatomic potential whose page you are on (by its primary sources given below in "How to Cite").

Articles marked by the green star have been determined to have used the potential in computations (as opposed to only citing it as background information) by a machine learning (ML) algorithm developed by the KIM Team that analyzes the full text of the papers. Articles that do not use it are marked with a null symbol, and in cases where no information is available a question mark is shown.

The full text of the articles used to train the ML algorithm is provided by the Allen Institute for AI through the Semantic Scholar project.

The word cloud to the right is built from the abstracts of the primary sources and using papers to give a sense of the types of physical phenomena to which this interatomic potential is applied.

IMPORTANT NOTE: Usage can only be determined for articles for which Semantic Scholar can provide OpenKIM with the full text. Where this is not the case, we ask the community for help in determining usage. If you know whether an article did or did not use a potential, let us know by clicking the cloud icon by the article and completing a one question form.

The word cloud indicates applications of this Potential. The bar chart shows citations per year of this Potential.

Help us to determine which of the papers that cite this potential actually used it to perform calculations. If you know, click the  .
Description
A short description of the Model describing its key features including for example: type of model (pair potential, 3-body potential, EAM, etc.), modeled species (Ac, Ag, ..., Zr), intended purpose, origin, and so on.
This potential can clarify the physical metallurgical reasons for the materials phenomena (sluggish diffusion and micro-twining at cryogenic temperatures) and shows the effect of individual elements on solid solution hardening for the equiatomic CoCrFeMnNi HEA. A significant number of stable vacant lattice sites with high migration energy barriers exists and is thought to cause the sluggish diffusion. And also, this potential predict that the hexagonal close-packed (hcp) structure is more stable than the face-centered cubic (fcc) structure at 0 K, that paper proposes as the fundamental reason for the micro-twinning at cryogenic temperatures.
Species
The supported atomic species.
Co, Cr, Fe, Mn, Ni
Disclaimer
A statement of applicability provided by the contributor, informing users of the intended use of this KIM Item.
None
Content Origin http://cmse.postech.ac.kr/home_2nnmeam
Contributor Hyeon-Seok Do
Maintainer Hyeon-Seok Do
Developer Won-Mi Choi
Yong Hee Jo
S.S. Sohn
Sunghak Lee
Byeong-Joo Lee
Published on KIM 2021
How to Cite

This Model originally published in [1] is archived in OpenKIM [2-5].

[1] Choi W-M, Jo YH, Sohn SS, Lee S, Lee B-J. Understanding the physical metallurgy of the CoCrFeMnNi high-entropy alloy: an atomistic simulation study. npj Computational Materials. 2018;4:1. doi:10.1038/s41524-017-0060-9 — (Primary Source) A primary source is a reference directly related to the item documenting its development, as opposed to other sources that are provided as background information.

[2] MEAM Potential for the Co-Ni-Cr-Fe-Mn system developed by Choi et al., (2018) v001. OpenKIM; 2021. doi:10.25950/bc54d772

[3] Modified embedded atom method (MEAM) Model Driver v001. OpenKIM; 2021. doi:10.25950/773efb8e

[4] Tadmor EB, Elliott RS, Sethna JP, Miller RE, Becker CA. The potential of atomistic simulations and the Knowledgebase of Interatomic Models. JOM. 2011;63(7):17. doi:10.1007/s11837-011-0102-6

[5] Elliott RS, Tadmor EB. Knowledgebase of Interatomic Models (KIM) Application Programming Interface (API). OpenKIM; 2011. doi:10.25950/ff8f563a

Click here to download the above citation in BibTeX format.
Funding Not available
Short KIM ID
The unique KIM identifier code.
MO_115454747503_001
Extended KIM ID
The long form of the KIM ID including a human readable prefix (100 characters max), two underscores, and the Short KIM ID. Extended KIM IDs can only contain alpha-numeric characters (letters and digits) and underscores and must begin with a letter.
MEAM_LAMMPS_ChoiJoSohn_2018_CoNiCrFeMn__MO_115454747503_001
DOI 10.25950/bc54d772
https://doi.org/10.25950/bc54d772
https://search.datacite.org/works/10.25950/bc54d772
KIM Item Type
Specifies whether this is a Portable Model (software implementation of an interatomic model); Portable Model with parameter file (parameter file to be read in by a Model Driver); Model Driver (software implementation of an interatomic model that reads in parameters).
Portable Model using Model Driver MEAM_LAMMPS__MD_249792265679_001
DriverMEAM_LAMMPS__MD_249792265679_001
KIM API Version2.2
Potential Type meam
Previous Version MEAM_LAMMPS_ChoiJoSohn_2018_CoNiCrFeMn__MO_115454747503_000

(Click here to learn more about Verification Checks)

Grade Name Category Brief Description Full Results Aux File(s)
P vc-species-supported-as-stated mandatory
The model supports all species it claims to support; see full description.
Results Files
N/A vc-periodicity-support mandatory
Periodic boundary conditions are handled correctly; see full description.
Results Files
P vc-permutation-symmetry mandatory
Total energy and forces are unchanged when swapping atoms of the same species; see full description.
Results Files
N/A vc-memory-leak informational
The model code does not have memory leaks (i.e. it releases all allocated memory at the end); see full description.
Results Files
P vc-thread-safe mandatory
The model returns the same energy and forces when computed in serial and when using parallel threads for a set of configurations. Note that this is not a guarantee of thread safety; see full description.
Results Files
P vc-unit-conversion mandatory
The model is able to correctly convert its energy and/or forces to different unit sets; see full description.
Results Files


BCC Lattice Constant

This bar chart plot shows the mono-atomic body-centered cubic (bcc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Fe
Species: Mn
Species: Ni
Species: Co
Species: Cr


Cohesive Energy Graph

This graph shows the cohesive energy versus volume-per-atom for the current mode for four mono-atomic cubic phases (body-centered cubic (bcc), face-centered cubic (fcc), simple cubic (sc), and diamond). The curve with the lowest minimum is the ground state of the crystal if stable. (The crystal structure is enforced in these calculations, so the phase may not be stable.) Graphs are generated for each species supported by the model.

Species: Mn
Species: Cr
Species: Co
Species: Fe
Species: Ni


Diamond Lattice Constant

This bar chart plot shows the mono-atomic face-centered diamond lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Fe
Species: Mn
Species: Cr


FCC Elastic Constants

This bar chart plot shows the mono-atomic face-centered cubic (fcc) elastic constants predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Ni


FCC Lattice Constant

This bar chart plot shows the mono-atomic face-centered cubic (fcc) lattice constant predicted by the current model (shown in red) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Cr
Species: Ni
Species: Mn
Species: Fe


FCC Stacking Fault Energies

This bar chart plot shows the intrinsic and extrinsic stacking fault energies as well as the unstable stacking and unstable twinning energies for face-centered cubic (fcc) predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

FCC Surface Energies

This bar chart plot shows the mono-atomic face-centered cubic (fcc) relaxed surface energies predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Ni


SC Lattice Constant

This bar chart plot shows the mono-atomic simple cubic (sc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Mn
Species: Co
Species: Ni


Cubic Crystal Basic Properties Table

Species: Co

Species: Cr

Species: Fe

Species: Mn

Species: Ni





Cohesive energy versus lattice constant curve for monoatomic cubic lattices v003

Creators:
Contributor: karls
Publication Year: 2019
DOI: https://doi.org/10.25950/64cb38c5

This Test Driver uses LAMMPS to compute the cohesive energy of a given monoatomic cubic lattice (fcc, bcc, sc, or diamond) at a variety of lattice spacings. The lattice spacings range from a_min (=a_min_frac*a_0) to a_max (=a_max_frac*a_0) where a_0, a_min_frac, and a_max_frac are read from stdin (a_0 is typically approximately equal to the equilibrium lattice constant). The precise scaling and number of lattice spacings sampled between a_min and a_0 (a_0 and a_max) is specified by two additional parameters passed from stdin: N_lower and samplespacing_lower (N_upper and samplespacing_upper). Please see README.txt for further details.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Cohesive energy versus lattice constant curve for bcc Co v004 view 36233
Cohesive energy versus lattice constant curve for bcc Cr v004 view 36591
Cohesive energy versus lattice constant curve for bcc Fe v004 view 50802
Cohesive energy versus lattice constant curve for bcc Mn v004 view 37298
Cohesive energy versus lattice constant curve for bcc Ni v004 view 85912
Cohesive energy versus lattice constant curve for diamond Cr v003 view 41745
Cohesive energy versus lattice constant curve for diamond Fe v004 view 54454
Cohesive energy versus lattice constant curve for diamond Mn v003 view 28744
Cohesive energy versus lattice constant curve for fcc Cr v003 view 29410
Cohesive energy versus lattice constant curve for fcc Fe v004 view 36124
Cohesive energy versus lattice constant curve for fcc Mn v003 view 29908
Cohesive energy versus lattice constant curve for fcc Ni v004 view 64369
Cohesive energy versus lattice constant curve for sc Co v003 view 28595
Cohesive energy versus lattice constant curve for sc Mn v003 view 32712
Cohesive energy versus lattice constant curve for sc Ni v004 view 50354


Elastic constants for cubic crystals at zero temperature and pressure v006

Creators: Junhao Li and Ellad Tadmor
Contributor: tadmor
Publication Year: 2019
DOI: https://doi.org/10.25950/5853fb8f

Computes the cubic elastic constants for some common crystal types (fcc, bcc, sc, diamond) by calculating the hessian of the energy density with respect to strain. An estimate of the error associated with the numerical differentiation performed is reported.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Elastic constants for bcc Co at zero temperature v006 view 111644
Elastic constants for bcc Fe at zero temperature v006 view 120466
Elastic constants for fcc Ni at zero temperature v006 view 103926
Elastic constants for sc Ni at zero temperature v006 view 103041


Relaxed energy as a function of tilt angle for a symmetric tilt grain boundary within a cubic crystal v002

Creators: Brandon Runnels
Contributor: brunnels
Publication Year: 2019
DOI: https://doi.org/10.25950/4723cee7

Computes grain boundary energy for a range of tilt angles given a crystal structure, tilt axis, and material.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Relaxed energy as a function of tilt angle for a 100 symmetric tilt grain boundary in fcc Ni v000 view 28690431


Relaxed energy as a function of tilt angle for a symmetric tilt grain boundary within a cubic crystal v003

Creators:
Contributor: brunnels
Publication Year: 2022
DOI: https://doi.org/10.25950/2c59c9d6

Computes grain boundary energy for a range of tilt angles given a crystal structure, tilt axis, and material.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Relaxed energy as a function of tilt angle for a 100 symmetric tilt grain boundary in bcc Fe v001 view 28457555
Relaxed energy as a function of tilt angle for a 110 symmetric tilt grain boundary in bcc Fe v001 view 130788790
Relaxed energy as a function of tilt angle for a 111 symmetric tilt grain boundary in bcc Fe v001 view 78447571
Relaxed energy as a function of tilt angle for a 112 symmetric tilt grain boundary in bcc Fe v001 view 267183363
Relaxed energy as a function of tilt angle for a 100 symmetric tilt grain boundary in fcc Fe v001 view 51946396
Relaxed energy as a function of tilt angle for a 110 symmetric tilt grain boundary in fcc Fe v001 view 642368906
Relaxed energy as a function of tilt angle for a 110 symmetric tilt grain boundary in fcc Ni v001 view 160840383
Relaxed energy as a function of tilt angle for a 111 symmetric tilt grain boundary in fcc Fe v001 view 165735539
Relaxed energy as a function of tilt angle for a 111 symmetric tilt grain boundary in fcc Ni v001 view 93591259
Relaxed energy as a function of tilt angle for a 112 symmetric tilt grain boundary in fcc Ni v001 view 357945938


Equilibrium lattice constant and cohesive energy of a cubic lattice at zero temperature and pressure v007

Creators: Daniel S. Karls and Junhao Li
Contributor: karls
Publication Year: 2019
DOI: https://doi.org/10.25950/2765e3bf

Equilibrium lattice constant and cohesive energy of a cubic lattice at zero temperature and pressure.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Equilibrium zero-temperature lattice constant for bcc Co v007 view 135126
Equilibrium zero-temperature lattice constant for bcc Cr v007 view 129974
Equilibrium zero-temperature lattice constant for bcc Fe v007 view 132769
Equilibrium zero-temperature lattice constant for bcc Mn v007 view 133024
Equilibrium zero-temperature lattice constant for bcc Ni v007 view 311035
Equilibrium zero-temperature lattice constant for diamond Cr v007 view 249387
Equilibrium zero-temperature lattice constant for diamond Fe v007 view 133436
Equilibrium zero-temperature lattice constant for diamond Mn v007 view 125868
Equilibrium zero-temperature lattice constant for fcc Cr v007 view 134515
Equilibrium zero-temperature lattice constant for fcc Fe v007 view 229409
Equilibrium zero-temperature lattice constant for fcc Mn v007 view 278235
Equilibrium zero-temperature lattice constant for fcc Ni v007 view 229782
Equilibrium zero-temperature lattice constant for sc Co v007 view 129893
Equilibrium zero-temperature lattice constant for sc Mn v007 view 129616
Equilibrium zero-temperature lattice constant for sc Ni v007 view 127249


Equilibrium lattice constants for hexagonal bulk structures at zero temperature and pressure v005

Creators: Daniel S. Karls and Junhao Li
Contributor: karls
Publication Year: 2019
DOI: https://doi.org/10.25950/c339ca32

Calculates lattice constant of hexagonal bulk structures at zero temperature and pressure by using simplex minimization to minimize the potential energy.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Equilibrium lattice constants for hcp Cr v005 view 2025025
Equilibrium lattice constants for hcp Fe v005 view 2181715
Equilibrium lattice constants for hcp Mn v005 view 2120209
Equilibrium lattice constants for hcp Ni v005 view 2078068


High-symmetry surface energies in cubic lattices and broken bond model v004

Creators: Matt Bierbaum
Contributor: mattbierbaum
Publication Year: 2019
DOI: https://doi.org/10.25950/6c43a4e6

Calculates the surface energy of several high symmetry surfaces and produces a broken-bond model fit. In latex form, the fit equations are given by:

E_{FCC} (\vec{n}) = p_1 (4 \left( |x+y| + |x-y| + |x+z| + |x-z| + |z+y| +|z-y|\right)) + p_2 (8 \left( |x| + |y| + |z|\right)) + p_3 (2 ( |x+ 2y + z| + |x+2y-z| + |x-2y + z| + |x-2y-z| + |2x+y+z| + |2x+y-z| +|2x-y+z| +|2x-y-z| +|x+y+2z| +|x+y-2z| +|x-y+2z| +|x-y-2z| ) + c

E_{BCC} (\vec{n}) = p_1 (6 \left( | x+y+z| + |x+y-z| + |-x+y-z| + |x-y+z| \right)) + p_2 (8 \left( |x| + |y| + |z|\right)) + p_3 (4 \left( |x+y| + |x-y| + |x+z| + |x-z| + |z+y| +|z-y|\right)) +c.

In Python, these two fits take the following form:

def BrokenBondFCC(params, index):

import numpy
x, y, z = index
x = x / numpy.sqrt(x**2.+y**2.+z**2.)
y = y / numpy.sqrt(x**2.+y**2.+z**2.)
z = z / numpy.sqrt(x**2.+y**2.+z**2.)

return params[0]*4* (abs(x+y) + abs(x-y) + abs(x+z) + abs(x-z) + abs(z+y) + abs(z-y)) + params[1]*8*(abs(x) + abs(y) + abs(z)) + params[2]*(abs(x+2*y+z) + abs(x+2*y-z) +abs(x-2*y+z) +abs(x-2*y-z) + abs(2*x+y+z) +abs(2*x+y-z) +abs(2*x-y+z) +abs(2*x-y-z) + abs(x+y+2*z) +abs(x+y-2*z) +abs(x-y+2*z) +abs(x-y-2*z))+params[3]

def BrokenBondBCC(params, x, y, z):


import numpy
x, y, z = index
x = x / numpy.sqrt(x**2.+y**2.+z**2.)
y = y / numpy.sqrt(x**2.+y**2.+z**2.)
z = z / numpy.sqrt(x**2.+y**2.+z**2.)

return params[0]*6*(abs(x+y+z) + abs(x-y-z) + abs(x-y+z) + abs(x+y-z)) + params[1]*8*(abs(x) + abs(y) + abs(z)) + params[2]*4* (abs(x+y) + abs(x-y) + abs(x+z) + abs(x-z) + abs(z+y) + abs(z-y)) + params[3]
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Broken-bond fit of high-symmetry surface energies in bcc Cr v004 view 477050
Broken-bond fit of high-symmetry surface energies in fcc Ni v004 view 722666


ElasticConstantsCubic__TD_011862047401_006

ElasticConstantsHexagonal__TD_612503193866_004

GrainBoundaryCubicCrystalSymmetricTiltRelaxedEnergyVsAngle__TD_410381120771_002
Test Error Categories Link to Error page
Relaxed energy as a function of tilt angle for a 110 symmetric tilt grain boundary in bcc Fe v000 other view
Relaxed energy as a function of tilt angle for a 111 symmetric tilt grain boundary in bcc Fe v000 other view
Relaxed energy as a function of tilt angle for a 112 symmetric tilt grain boundary in bcc Fe v000 other view
Relaxed energy as a function of tilt angle for a 110 symmetric tilt grain boundary in fcc Fe v000 other view
Relaxed energy as a function of tilt angle for a 110 symmetric tilt grain boundary in fcc Ni v000 other view
Relaxed energy as a function of tilt angle for a 111 symmetric tilt grain boundary in fcc Fe v000 other view
Relaxed energy as a function of tilt angle for a 111 symmetric tilt grain boundary in fcc Ni v000 other view
Relaxed energy as a function of tilt angle for a 112 symmetric tilt grain boundary in fcc Ni v000 other view

GrainBoundaryCubicCrystalSymmetricTiltRelaxedEnergyVsAngle__TD_410381120771_003

LatticeConstantCubicEnergy__TD_475411767977_007

LatticeConstantHexagonalEnergy__TD_942334626465_005
Test Error Categories Link to Error page
Equilibrium lattice constants for hcp Co v005 other view

LinearThermalExpansionCoeffCubic__TD_522633393614_001

PhononDispersionCurve__TD_530195868545_004
Test Error Categories Link to Error page
Phonon dispersion relations for fcc Ni v004 other view

StackingFaultFccCrystal__TD_228501831190_002
Test Error Categories Link to Error page
Stacking and twinning fault energies for fcc Ni v002 other view

SurfaceEnergyCubicCrystalBrokenBondFit__TD_955413365818_004
Test Error Categories Link to Error page
Broken-bond fit of high-symmetry surface energies in bcc Fe v004 other view

No Driver




This Model requires a Model Driver. Archives for the Model Driver MEAM_LAMMPS__MD_249792265679_001 appear below.


MEAM_LAMMPS__MD_249792265679_001.txz Tar+XZ Linux and OS X archive
MEAM_LAMMPS__MD_249792265679_001.zip Zip Windows archive
Wiki is ready to accept new content.

Login to edit Wiki content