Title
A single sentence description.
|
MEAM Potential for the Pt-Mo system developed by Kim and Lee (2017) v001 |
---|---|
Description
A short description of the Model describing its key features including for example: type of model (pair potential, 3-body potential, EAM, etc.), modeled species (Ac, Ag, ..., Zr), intended purpose, origin, and so on.
|
Interatomic potentials for Pt-Mo binary system has been developed on the basis of the second nearest-neighbor modified embedded-atom method (2NN MEAM) formalism. The potential reproduce various materials properties of alloys (structural, thermodynamic and order-disorder transition temperature) in reasonable agreements with relevant experimental data and other calculations. |
Species
The supported atomic species.
| Mo, Pt |
Disclaimer
A statement of applicability provided by the contributor, informing users of the intended use of this KIM Item.
|
None |
Content Origin | http://cmse.postech.ac.kr/home_2nnmeam |
Contributor |
Donghyuk Seol |
Maintainer |
Donghyuk Seol |
Developer |
Jin-Soo Kim Donghyuk Seol Joonho Ji Hyo-Sun Jang Byeong-Joo Lee |
Published on KIM | 2021 |
How to Cite | Click here to download this citation in BibTeX format. |
Funding | Not available |
Short KIM ID
The unique KIM identifier code.
| MO_831380044253_001 |
Extended KIM ID
The long form of the KIM ID including a human readable prefix (100 characters max), two underscores, and the Short KIM ID. Extended KIM IDs can only contain alpha-numeric characters (letters and digits) and underscores and must begin with a letter.
| MEAM_LAMMPS_KimSeolJi_2017_PtMo__MO_831380044253_001 |
DOI |
10.25950/e982a9fd https://doi.org/10.25950/e982a9fd https://commons.datacite.org/doi.org/10.25950/e982a9fd |
KIM Item Type
Specifies whether this is a Portable Model (software implementation of an interatomic model); Portable Model with parameter file (parameter file to be read in by a Model Driver); Model Driver (software implementation of an interatomic model that reads in parameters).
| Portable Model using Model Driver MEAM_LAMMPS__MD_249792265679_001 |
Driver | MEAM_LAMMPS__MD_249792265679_001 |
KIM API Version | 2.2 |
Potential Type | meam |
Previous Version | MEAM_LAMMPS_KimSeolJi_2017_PtMo__MO_831380044253_000 |
Grade | Name | Category | Brief Description | Full Results | Aux File(s) |
---|---|---|---|---|---|
P | vc-species-supported-as-stated | mandatory | The model supports all species it claims to support; see full description. |
Results | Files |
P | vc-periodicity-support | mandatory | Periodic boundary conditions are handled correctly; see full description. |
Results | Files |
P | vc-permutation-symmetry | mandatory | Total energy and forces are unchanged when swapping atoms of the same species; see full description. |
Results | Files |
P | vc-objectivity | informational | Total energy is unchanged and forces transform correctly under rigid-body translation and rotation; see full description. |
Results | Files |
P | vc-inversion-symmetry | informational | Total energy is unchanged and forces change sign when inverting a configuration through the origin; see full description. |
Results | Files |
P | vc-memory-leak | informational | The model code does not have memory leaks (i.e. it releases all allocated memory at the end); see full description. |
Results | Files |
P | vc-thread-safe | mandatory | The model returns the same energy and forces when computed in serial and when using parallel threads for a set of configurations. Note that this is not a guarantee of thread safety; see full description. |
Results | Files |
P | vc-unit-conversion | mandatory | The model is able to correctly convert its energy and/or forces to different unit sets; see full description. |
Results | Files |
This bar chart plot shows the mono-atomic body-centered cubic (bcc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.
This graph shows the cohesive energy versus volume-per-atom for the current mode for four mono-atomic cubic phases (body-centered cubic (bcc), face-centered cubic (fcc), simple cubic (sc), and diamond). The curve with the lowest minimum is the ground state of the crystal if stable. (The crystal structure is enforced in these calculations, so the phase may not be stable.) Graphs are generated for each species supported by the model.
This bar chart plot shows the mono-atomic face-centered diamond lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.
This graph shows the dislocation core energy of a cubic crystal at zero temperature and pressure for a specific set of dislocation core cutoff radii. After obtaining the total energy of the system from conjugate gradient minimizations, non-singular, isotropic and anisotropic elasticity are applied to obtain the dislocation core energy for each of these supercells with different dipole distances. Graphs are generated for each species supported by the model.
(No matching species)This bar chart plot shows the mono-atomic face-centered cubic (fcc) elastic constants predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.
This bar chart plot shows the mono-atomic face-centered cubic (fcc) lattice constant predicted by the current model (shown in red) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.
This bar chart plot shows the intrinsic and extrinsic stacking fault energies as well as the unstable stacking and unstable twinning energies for face-centered cubic (fcc) predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.
This bar chart plot shows the mono-atomic face-centered cubic (fcc) relaxed surface energies predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.
(No matching species)This bar chart plot shows the mono-atomic simple cubic (sc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.
Test | Test Results | Link to Test Results page | Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.
Measured in Millions of Whetstone Instructions (MWI) |
---|---|---|---|
Cohesive energy versus lattice constant curve for bcc Mo v004 | view | 5799 | |
Cohesive energy versus lattice constant curve for bcc Pt v004 | view | 5888 | |
Cohesive energy versus lattice constant curve for diamond Mo v004 | view | 7715 | |
Cohesive energy versus lattice constant curve for diamond Pt v004 | view | 5868 | |
Cohesive energy versus lattice constant curve for fcc Mo v004 | view | 5878 | |
Cohesive energy versus lattice constant curve for fcc Pt v004 | view | 5928 | |
Cohesive energy versus lattice constant curve for sc Mo v004 | view | 6097 | |
Cohesive energy versus lattice constant curve for sc Pt v004 | view | 7583 |
Test | Test Results | Link to Test Results page | Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.
Measured in Millions of Whetstone Instructions (MWI) |
---|---|---|---|
Elastic constants for bcc Mo at zero temperature v006 | view | 46100 | |
Elastic constants for bcc Pt at zero temperature v006 | view | 46398 | |
Elastic constants for fcc Mo at zero temperature v006 | view | 24228 | |
Elastic constants for fcc Pt at zero temperature v006 | view | 34761 | |
Elastic constants for sc Mo at zero temperature v006 | view | 24238 | |
Elastic constants for sc Pt at zero temperature v006 | view | 47462 |
Test | Test Results | Link to Test Results page | Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.
Measured in Millions of Whetstone Instructions (MWI) |
---|---|---|---|
Relaxed energy as a function of tilt angle for a 100 symmetric tilt grain boundary in bcc Mo v001 | view | 12995901 | |
Relaxed energy as a function of tilt angle for a 110 symmetric tilt grain boundary in bcc Mo v001 | view | 58208912 | |
Relaxed energy as a function of tilt angle for a 111 symmetric tilt grain boundary in bcc Mo v001 | view | 22525949 | |
Relaxed energy as a function of tilt angle for a 112 symmetric tilt grain boundary in bcc Mo v001 | view | 123291602 |
Test | Test Results | Link to Test Results page | Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.
Measured in Millions of Whetstone Instructions (MWI) |
---|---|---|---|
Equilibrium zero-temperature lattice constant for bcc Mo v007 | view | 21772 | |
Equilibrium zero-temperature lattice constant for bcc Pt v007 | view | 21752 | |
Equilibrium zero-temperature lattice constant for diamond Mo v007 | view | 21692 | |
Equilibrium zero-temperature lattice constant for diamond Pt v007 | view | 22548 | |
Equilibrium zero-temperature lattice constant for fcc Mo v007 | view | 21523 | |
Equilibrium zero-temperature lattice constant for fcc Pt v007 | view | 21712 | |
Equilibrium zero-temperature lattice constant for sc Mo v007 | view | 21175 | |
Equilibrium zero-temperature lattice constant for sc Pt v007 | view | 21304 |
Test | Test Results | Link to Test Results page | Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.
Measured in Millions of Whetstone Instructions (MWI) |
---|---|---|---|
Equilibrium lattice constants for hcp Mo v005 | view | 321415 | |
Equilibrium lattice constants for hcp Pt v005 | view | 310783 |
Test | Test Results | Link to Test Results page | Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.
Measured in Millions of Whetstone Instructions (MWI) |
---|---|---|---|
Linear thermal expansion coefficient of bcc Mo at 293.15 K under a pressure of 0 MPa v001 | view | 45796904 | |
Linear thermal expansion coefficient of fcc Pt at 293.15 K under a pressure of 0 MPa v001 | view | 38483839 |
Test | Test Results | Link to Test Results page | Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.
Measured in Millions of Whetstone Instructions (MWI) |
---|---|---|---|
Stacking and twinning fault energies for fcc Pt v002 | view | 19997686 |
Test | Error Categories | Link to Error page |
---|---|---|
Elastic constants for diamond Mo at zero temperature v001 | other | view |
Elastic constants for diamond Pt at zero temperature v001 | other | view |
Test | Error Categories | Link to Error page |
---|---|---|
Relaxed energy as a function of tilt angle for a 112 symmetric tilt grain boundary in bcc Mo v000 | other | view |
Test | Error Categories | Link to Error page |
---|---|---|
Relaxed energy as a function of tilt angle for a 100 symmetric tilt grain boundary in bcc Mo v001 | other | view |
Test | Error Categories | Link to Error page |
---|---|---|
Phonon dispersion relations for fcc Pt v004 | other | view |
Test | Error Categories | Link to Error page |
---|---|---|
Broken-bond fit of high-symmetry surface energies in bcc Mo v004 | other | view |
Broken-bond fit of high-symmetry surface energies in fcc Pt v004 | other | view |
MEAM_LAMMPS_KimSeolJi_2017_PtMo__MO_831380044253_001.txz | Tar+XZ | Linux and OS X archive |
MEAM_LAMMPS_KimSeolJi_2017_PtMo__MO_831380044253_001.zip | Zip | Windows archive |
This Model requires a Model Driver. Archives for the Model Driver MEAM_LAMMPS__MD_249792265679_001 appear below.
MEAM_LAMMPS__MD_249792265679_001.txz | Tar+XZ | Linux and OS X archive |
MEAM_LAMMPS__MD_249792265679_001.zip | Zip | Windows archive |