Jump to: Models | Files | Wiki

LatticeConstantCubicEnergy_fcc_Mo__TE_434577360861_007

Title
A single sentence description.
Equilibrium zero-temperature lattice constant for fcc Mo v007
Description Equilibrium lattice constant and cohesive energy of fcc Mo at zero temperature and pressure.
Species
The supported atomic species.
Mo
Disclaimer
A short statement of applicability which will accompany any results computed using it. A developer can use the disclaimer to inform users of the intended use of this KIM Item.
This Test was computer-generated
Contributor karls
Maintainer karls
Author Daniel S. Karls and Junhao Li
Publication Year 2019
Item Citation

This Test is archived in OpenKIM [1-4].

[1] Karls DS, Li J. Equilibrium zero-temperature lattice constant for fcc Mo v007. OpenKIM; 2019.

[2] Karls DS, Li J. Equilibrium lattice constant and cohesive energy of a cubic lattice at zero temperature and pressure v007. OpenKIM; 2019. doi:10.25950/2765e3bf

[3] Tadmor EB, Elliott RS, Sethna JP, Miller RE, Becker CA. The potential of atomistic simulations and the Knowledgebase of Interatomic Models. JOM. 2011;63(7):17. doi:10.1007/s11837-011-0102-6

[4] Elliott RS, Tadmor EB. Knowledgebase of Interatomic Models (KIM) Application Programming Interface (API). OpenKIM; 2011. doi:10.25950/ff8f563a

Click here to download the above citation in BibTeX format.
Short KIM ID
The unique KIM identifier code.
TE_434577360861_007
Extended KIM ID
The long form of the KIM ID including a human readable prefix (100 characters max), two underscores, and the Short KIM ID. Extended KIM IDs can only contain alpha-numeric characters (letters and digits) and underscores and must begin with a letter.
LatticeConstantCubicEnergy_fcc_Mo__TE_434577360861_007
Citable Link https://openkim.org/cite/TE_434577360861_007
KIM Item TypeTest
DriverLatticeConstantCubicEnergy__TD_475411767977_007
Properties
Properties as defined in kimspec.edn. These properties are inhereted from the Test Driver.
KIM API Version2.0
Simulator Name
The name of the simulator as defined in kimspec.edn. This Simulator Name is inhereted from the Test Driver.
ase
Programming Language(s)
The programming languages used in the code and the percentage of the code written in each one.
100.00% Python
Previous Version LatticeConstantCubicEnergy_fcc_Mo__TE_434577360861_006


Models

No Driver
Model Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Sim_LAMMPS_ADP_StarikovKolotovaKuksin_2017_UMo__SM_682749584055_000 view 9917
Sim_LAMMPS_MEAM_ParkFellingerLenosky_2012_Mo__SM_769176993156_000 view 8125
Sim_LAMMPS_SNAP_ChenDengTran_2017_Mo__SM_003882782678_000 view 11644
EAM_Dynamo__MD_120291908751_005
Model Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
EAM_Dynamo_SmirnovaKuskinStarikov_2013_UMoXe__MO_679329885632_005 view 3647
EAM_Dynamo_ZhouJohnsonWadley_2004_Mo__MO_271256517527_005 view 3711
EAM_Dynamo_ZhouWadleyJohnson_2001NISTretabulation_Mo__MO_230319944007_000 view 3903
EAM_MagneticCubic__MD_620624592962_002
Model Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
EAM_MagneticCubic_DerletNguyenDudarev_2007_Mo__MO_424746498193_002 view 3807
LJ__MD_414112407348_003
Model Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
LJ_ElliottAkerson_2015_Universal__MO_959249795837_003 view 5982
Morse_Shifted__MD_552566534109_002
Model Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Morse_Shifted_GirifalcoWeizer_1959HighCutoff_Mo__MO_666830945336_002 view 3487
Morse_Shifted_GirifalcoWeizer_1959LowCutoff_Mo__MO_228581001644_002 view 3743
Morse_Shifted_GirifalcoWeizer_1959MedCutoff_Mo__MO_534363225491_002 view 3839
SW_MX2__MD_242389978788_001
Model Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
SW_MX2_WenShirodkarPlechac_2017_MoS__MO_201919462778_001 view 3167





Download Dependency

This Test requires a Test Driver. Archives for the Test Driver LatticeConstantCubicEnergy__TD_475411767977_007 appear below.


LatticeConstantCubicEnergy__TD_475411767977_007.txz Tar+XZ Linux and OS X archive
LatticeConstantCubicEnergy__TD_475411767977_007.zip Zip Windows archive

Wiki

Wiki is ready to accept new content.

Login to edit Wiki content