Title
A single sentence description.
|
MEAM potential for TiAl alloys developed by Sun et al. (2018) v002 |
---|---|
Citations
This panel presents the list of papers that cite the interatomic potential whose page you are on (by its primary sources given below in "How to Cite"). Articles marked by the green star have been determined to have used the potential in computations (as opposed to only citing it as background information) by a machine learning (ML) algorithm developed by the KIM Team that analyzes the full text of the papers. Articles that do not use it are marked with a null symbol, and in cases where no information is available a question mark is shown. The full text of the articles used to train the ML algorithm is provided by the Allen Institute for AI through the Semantic Scholar project. The word cloud to the right is built from the abstracts of the primary sources and using papers to give a sense of the types of physical phenomena to which this interatomic potential is applied. IMPORTANT NOTE: Usage can only be determined for articles for which Semantic Scholar can provide OpenKIM with the full text. Where this is not the case, we ask the community for help in determining usage. If you know whether an article did or did not use a potential, let us know by clicking the cloud icon by the article and completing a one question form. |
This panel provides information on past usage of this interatomic potential powered by the OpenKIM Deep Citation framework (click the question mark on the left for more details). The word cloud indicates typical applications of the potential. The bar chart shows citations per year of this potential. The list below indicates usage of the potential by citing articles. ![]()
Help us to determine which of the papers that cite this potential actually used it to perform calculations. If you know, click the .
|
Description
A short description of the Model describing its key features including for example: type of model (pair potential, 3-body potential, EAM, etc.), modeled species (Ac, Ag, ..., Zr), intended purpose, origin, and so on.
|
Interatomic potentials for pure Ti and Al and binary TiAl were developed utilizing the second nearest neighbor modified embedded-atom method (MEAM) formalism. The potentials were parameterized to reproduce multiple properties spanning bulk solids, solid surfaces, solid/liquid phase changes, and liquid interfacial properties. This parametrization was carried out using a newly developed optimization procedure that combined a fitness function's simple minimization with a genetic algorithm to efficiently span the parameter space. The resulting MEAM potentials gave good agreement with experimental and DFT solid and liquid properties and reproduced the melting points for Ti, Al, and TiAl. However, the surface tensions from the model consistently underestimated experimental values. Liquid TiAl's surface was found to be mostly covered with Al atoms, showing that Al has a significant propensity for the liquid/air interface. |
Species
The supported atomic species.
| Al, Ti |
Disclaimer
A statement of applicability provided by the contributor, informing users of the intended use of this KIM Item.
|
None |
Content Origin | Files are provided by Collin D. Wick (Louisiana Tech University) on Feb 4, 2021, and posted with his permission. |
Contributor |
Yaser Afshar |
Maintainer |
Yaser Afshar |
Developer |
Shoutian Sun Bala R. Ramachandran Collin D. Wick |
Published on KIM | 2023 |
How to Cite |
This Model originally published in [1] is archived in OpenKIM [2-5]. [1] Sun S, Ramachandran BR, Wick CD. Solid, liquid, and interfacial properties of TiAl alloys: parameterization of a new modified embedded atom method model. Journal of Physics: Condensed Matter. 2018Jan;30(7):075002. doi:10.1088/1361-648x/aaa52c — (Primary Source) A primary source is a reference directly related to the item documenting its development, as opposed to other sources that are provided as background information. [2] Sun S, Ramachandran BR, Wick CD. MEAM potential for TiAl alloys developed by Sun et al. (2018) v002. OpenKIM; 2023. doi:10.25950/53f39e5b [3] Afshar Y, Hütter S, Rudd RE, Stukowski A, Tipton WW, Trinkle DR, et al. The modified embedded atom method (MEAM) potential v002. OpenKIM; 2023. doi:10.25950/ee5eba52 [4] Tadmor EB, Elliott RS, Sethna JP, Miller RE, Becker CA. The potential of atomistic simulations and the Knowledgebase of Interatomic Models. JOM. 2011;63(7):17. doi:10.1007/s11837-011-0102-6 [5] Elliott RS, Tadmor EB. Knowledgebase of Interatomic Models (KIM) Application Programming Interface (API). OpenKIM; 2011. doi:10.25950/ff8f563a Click here to download the above citation in BibTeX format. |
Funding | Not available |
Short KIM ID
The unique KIM identifier code.
| MO_022920256108_002 |
Extended KIM ID
The long form of the KIM ID including a human readable prefix (100 characters max), two underscores, and the Short KIM ID. Extended KIM IDs can only contain alpha-numeric characters (letters and digits) and underscores and must begin with a letter.
| MEAM_LAMMPS_SunRamachandranWick_2018_TiAl__MO_022920256108_002 |
DOI |
10.25950/53f39e5b https://doi.org/10.25950/53f39e5b https://search.datacite.org/works/10.25950/53f39e5b |
KIM Item Type
Specifies whether this is a Portable Model (software implementation of an interatomic model); Portable Model with parameter file (parameter file to be read in by a Model Driver); Model Driver (software implementation of an interatomic model that reads in parameters).
| Portable Model using Model Driver MEAM_LAMMPS__MD_249792265679_002 |
Driver | MEAM_LAMMPS__MD_249792265679_002 |
KIM API Version | 2.2 |
Potential Type | meam |
Previous Version | MEAM_LAMMPS_SunRamachandranWick_2018_TiAl__MO_022920256108_001 |
Grade | Name | Category | Brief Description | Full Results | Aux File(s) |
---|---|---|---|---|---|
P | vc-species-supported-as-stated | mandatory | The model supports all species it claims to support; see full description. |
Results | Files |
P | vc-periodicity-support | mandatory | Periodic boundary conditions are handled correctly; see full description. |
Results | Files |
P | vc-permutation-symmetry | mandatory | Total energy and forces are unchanged when swapping atoms of the same species; see full description. |
Results | Files |
N/A | vc-dimer-continuity-c1 | informational | The energy versus separation relation of a pair of atoms is C1 continuous (i.e. the function and its first derivative are continuous); see full description. |
Results | Files |
P | vc-objectivity | informational | Total energy is unchanged and forces transform correctly under rigid-body translation and rotation; see full description. |
Results | Files |
P | vc-inversion-symmetry | informational | Total energy is unchanged and forces change sign when inverting a configuration through the origin; see full description. |
Results | Files |
P | vc-memory-leak | informational | The model code does not have memory leaks (i.e. it releases all allocated memory at the end); see full description. |
Results | Files |
P | vc-thread-safe | mandatory | The model returns the same energy and forces when computed in serial and when using parallel threads for a set of configurations. Note that this is not a guarantee of thread safety; see full description. |
Results | Files |
P | vc-unit-conversion | mandatory | The model is able to correctly convert its energy and/or forces to different unit sets; see full description. |
Results | Files |
This bar chart plot shows the mono-atomic body-centered cubic (bcc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.
This graph shows the cohesive energy versus volume-per-atom for the current mode for four mono-atomic cubic phases (body-centered cubic (bcc), face-centered cubic (fcc), simple cubic (sc), and diamond). The curve with the lowest minimum is the ground state of the crystal if stable. (The crystal structure is enforced in these calculations, so the phase may not be stable.) Graphs are generated for each species supported by the model.
This bar chart plot shows the mono-atomic face-centered diamond lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.
This graph shows the dislocation core energy of a cubic crystal at zero temperature and pressure for a specific set of dislocation core cutoff radii. After obtaining the total energy of the system from conjugate gradient minimizations, non-singular, isotropic and anisotropic elasticity are applied to obtain the dislocation core energy for each of these supercells with different dipole distances. Graphs are generated for each species supported by the model.
(No matching species)This bar chart plot shows the mono-atomic face-centered cubic (fcc) elastic constants predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.
This bar chart plot shows the mono-atomic face-centered cubic (fcc) lattice constant predicted by the current model (shown in red) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.
This bar chart plot shows the intrinsic and extrinsic stacking fault energies as well as the unstable stacking and unstable twinning energies for face-centered cubic (fcc) predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.
This bar chart plot shows the mono-atomic face-centered cubic (fcc) relaxed surface energies predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.
This bar chart plot shows the mono-atomic simple cubic (sc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.
Test | Test Results | Link to Test Results page | Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.
Measured in Millions of Whetstone Instructions (MWI) |
---|---|---|---|
Cohesive energy versus lattice constant curve for bcc Al v004 | view | 7215 | |
Cohesive energy versus lattice constant curve for bcc Ti v004 | view | 7072 | |
Cohesive energy versus lattice constant curve for diamond Al v004 | view | 7509 | |
Cohesive energy versus lattice constant curve for diamond Ti v004 | view | 6455 | |
Cohesive energy versus lattice constant curve for fcc Al v004 | view | 7730 | |
Cohesive energy versus lattice constant curve for fcc Ti v004 | view | 6883 | |
Cohesive energy versus lattice constant curve for sc Al v004 | view | 7002 | |
Cohesive energy versus lattice constant curve for sc Ti v004 | view | 7436 |
Test | Test Results | Link to Test Results page | Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.
Measured in Millions of Whetstone Instructions (MWI) |
---|---|---|---|
Elastic constants for bcc Al at zero temperature v006 | view | 25988 | |
Elastic constants for bcc Ti at zero temperature v006 | view | 38504 | |
Elastic constants for diamond Al at zero temperature v001 | view | 36000 | |
Elastic constants for fcc Al at zero temperature v006 | view | 33276 | |
Elastic constants for fcc Ti at zero temperature v006 | view | 48663 | |
Elastic constants for sc Al at zero temperature v006 | view | 43068 | |
Elastic constants for sc Ti at zero temperature v006 | view | 28491 |
Test | Test Results | Link to Test Results page | Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.
Measured in Millions of Whetstone Instructions (MWI) |
---|---|---|---|
Relaxed energy as a function of tilt angle for a 110 symmetric tilt grain boundary in fcc Al v001 | view | 26895774 | |
Relaxed energy as a function of tilt angle for a 111 symmetric tilt grain boundary in fcc Al v001 | view | 10758419 | |
Relaxed energy as a function of tilt angle for a 112 symmetric tilt grain boundary in fcc Al v001 | view | 51856684 |
Test | Test Results | Link to Test Results page | Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.
Measured in Millions of Whetstone Instructions (MWI) |
---|---|---|---|
Equilibrium zero-temperature lattice constant for bcc Al v007 | view | 11736 | |
Equilibrium zero-temperature lattice constant for bcc Ti v007 | view | 9350 | |
Equilibrium zero-temperature lattice constant for diamond Al v007 | view | 12104 | |
Equilibrium zero-temperature lattice constant for diamond Ti v007 | view | 11637 | |
Equilibrium zero-temperature lattice constant for fcc Al v007 | view | 11558 | |
Equilibrium zero-temperature lattice constant for fcc Ti v007 | view | 12064 | |
Equilibrium zero-temperature lattice constant for sc Al v007 | view | 11070 | |
Equilibrium zero-temperature lattice constant for sc Ti v007 | view | 11632 |
Test | Test Results | Link to Test Results page | Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.
Measured in Millions of Whetstone Instructions (MWI) |
---|---|---|---|
Equilibrium lattice constants for hcp Al v005 | view | 129057 | |
Equilibrium lattice constants for hcp Ti v005 | view | 127584 |
Test | Test Results | Link to Test Results page | Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.
Measured in Millions of Whetstone Instructions (MWI) |
---|---|---|---|
Linear thermal expansion coefficient of fcc Al at 293.15 K under a pressure of 0 MPa v001 | view | 53458127 |
Test | Test Results | Link to Test Results page | Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.
Measured in Millions of Whetstone Instructions (MWI) |
---|---|---|---|
Stacking and twinning fault energies for fcc Al v002 | view | 15645923 |
Test | Test Results | Link to Test Results page | Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.
Measured in Millions of Whetstone Instructions (MWI) |
---|---|---|---|
Broken-bond fit of high-symmetry surface energies in fcc Al v004 | view | 111912 |
Test | Test Results | Link to Test Results page | Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.
Measured in Millions of Whetstone Instructions (MWI) |
---|---|---|---|
Monovacancy formation energy and relaxation volume for fcc Al | view | 183610 | |
Monovacancy formation energy and relaxation volume for hcp Ti | view | 272322 |
Test | Test Results | Link to Test Results page | Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.
Measured in Millions of Whetstone Instructions (MWI) |
---|---|---|---|
Vacancy formation and migration energy for fcc Al | view | 4508225 | |
Vacancy formation and migration energy for hcp Ti | view | 2303217 |
Test | Error Categories | Link to Error page |
---|---|---|
Elastic constants for diamond Ti at zero temperature v001 | other | view |
Test | Error Categories | Link to Error page |
---|---|---|
Elastic constants for hcp Al at zero temperature v004 | other | view |
Elastic constants for hcp Ti at zero temperature v004 | other | view |
Test | Error Categories | Link to Error page |
---|---|---|
Relaxed energy as a function of tilt angle for a 100 symmetric tilt grain boundary in fcc Al v003 | other | view |
Test | Error Categories | Link to Error page |
---|---|---|
Phonon dispersion relations for fcc Al v004 | other | view |
Test | Error Categories | Link to Error page |
---|---|---|
Broken-bond fit of high-symmetry surface energies in fcc Al v004 | other | view |
Verification Check | Error Categories | Link to Error page |
---|---|---|
DimerContinuityC1__VC_303890932454_005 | other | view |
ForcesNumerDeriv__VC_710586816390_003 | other | view |
MEAM_LAMMPS_SunRamachandranWick_2018_TiAl__MO_022920256108_002.txz | Tar+XZ | Linux and OS X archive |
MEAM_LAMMPS_SunRamachandranWick_2018_TiAl__MO_022920256108_002.zip | Zip | Windows archive |
This Model requires a Model Driver. Archives for the Model Driver MEAM_LAMMPS__MD_249792265679_002 appear below.
MEAM_LAMMPS__MD_249792265679_002.txz | Tar+XZ | Linux and OS X archive |
MEAM_LAMMPS__MD_249792265679_002.zip | Zip | Windows archive |