Title
A single sentence description.
|
QUIP Model Driver v000 |
---|---|
Description | Model driver for the QUIP library.\n\nQUIP git version: b0e43eb\nSubmodule path 'src/GAP': checked out '6c3375f'\nSubmodule path 'src/GAP/soap_turbo': checked out '03f9d82'\nSubmodule path 'src/fox': checked out 'b5b69ef'\n Drs. Noam Bernstein, Gábor Csányi, Alessandro De Vita, and James Kermode were the main developers of the libAtoms/QUIP framework used by the model driver. Drs. Albert Bartók-Pártay, Gábor Csányi, Risi Kondor, and Mike Payne were the original developers of the Gaussian approximation potential (GAP) interatomic potential method. Dr. Miguel Caro was the developer of the turbo-SOAP descriptor used by some GAP potentials. |
Disclaimer
A statement of applicability provided by the contributor, informing users of the intended use of this KIM Item.
|
None |
Content Origin | https://github.com/libAtoms/QUIP |
Content Other Locations | https://libatoms.github.io/QUIP |
Contributor |
Noam Bernstein |
Maintainer |
Noam Bernstein |
Developer |
Gabor Csanyi James Kermode Noam Bernstein Albert P. Bartók-Pártay Miguel A. Caro Michael C. Payne Risi Kondor Alessandro De Vita |
Published on KIM | 2023 |
How to Cite |
This Model Driver originally published in [1-3] is archived in OpenKIM [4-6]. [1] Csányi G, Winfield S, Kermode JR, De Vita A, Comisso A, Bernstein N, et al. Expressive Programming for Computational Physics in Fortran 95+. IoP Comput Phys Newsletter. 2007;:Spring 2007. — (Primary Source) A primary source is a reference directly related to the item documenting its development, as opposed to other sources that are provided as background information. [2] Bartók AP, Payne MC, Kondor R, Csányi G. Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. Phys Rev Lett. 2010Apr;104(13):136403. doi:10.1103/PhysRevLett.104.136403 [3] Caro MA. Optimizing many-body atomic descriptors for enhanced computational performance of machine learning based interatomic potentials. Phys Rev B [Internet]. 2019Jul;100(2):024112. Available from: https://link.aps.org/doi/10.1103/PhysRevB.100.024112 doi:10.1103/PhysRevB.100.024112 [4] Csanyi G, Kermode J, Bernstein N, Bartók-Pártay AP, Caro MA, Payne MC, et al. QUIP Model Driver v000. OpenKIM; 2023. doi:10.25950/c284446c [5] Tadmor EB, Elliott RS, Sethna JP, Miller RE, Becker CA. The potential of atomistic simulations and the Knowledgebase of Interatomic Models. JOM. 2011;63(7):17. doi:10.1007/s11837-011-0102-6 [6] Elliott RS, Tadmor EB. Knowledgebase of Interatomic Models (KIM) Application Programming Interface (API). OpenKIM; 2011. doi:10.25950/ff8f563a Click here to download the above citation in BibTeX format. |
Funding | Not available |
Short KIM ID
The unique KIM identifier code.
| MD_915965102628_000 |
Extended KIM ID
The long form of the KIM ID including a human readable prefix (100 characters max), two underscores, and the Short KIM ID. Extended KIM IDs can only contain alpha-numeric characters (letters and digits) and underscores and must begin with a letter.
| QUIP__MD_915965102628_000 |
DOI |
10.25950/c284446c https://doi.org/10.25950/c284446c https://commons.datacite.org/doi.org/10.25950/c284446c |
KIM Item Type | Model Driver |
KIM API Version | 2.2 |
Programming Language(s)
The programming languages used in the code and the percentage of the code written in each one.
| 100.00% Fortran |
QUIP_GAP_Xu_2003_Pt__MO_370837021112_000 |
QUIP__MD_915965102628_000.txz | Tar+XZ | Linux and OS X archive |
QUIP__MD_915965102628_000.zip | Zip | Windows archive |
The Tunable Intrinsic Ductility Potential (TIDP) of Rajan, Warner and Curtin is based on standard Morse potential. The ductility is tuned by altering the tail of \(\varphi(r)\) while leaving the energy well unchanged. The functional form is
\[\varphi(r)= \begin{cases} (1-\exp[-\alpha(r-1)])^2-1 & r \le r_1 \\ A_1 r^3 + B_1 r^2 + C_1 r + D_1 & r_1 < r \le r_2 \\ A_2 r^3 + B_2 r^2 + C_2 r + D_2 & r_2 < r \le r_3 \\ 0 & r_3 < r \end{cases}\]The TIDP model has 12 parameters:
\[\alpha, \quad r_1, \quad r_2, \quad r_3, \quad A_1, \quad B_1, \quad C_1, \quad D_1, \quad A_2, \quad B_2, \quad C_2, \quad D_2.\]