Jump to: Tests | Visualizers | Files | Wiki

Sim_LAMMPS_EAM_BonnyCastinBullens_2013_FeCrW__SM_699257350704_001

Interatomic potential for Chromium (Cr), Iron (Fe), Tungsten (W).
Use this Potential

Title
A single sentence description.
LAMMPS EAM potential for Fe-Cr-W developed by Bonny et al. (2013) v001
Citations

This panel presents information regarding the papers that have cited the interatomic potential (IP) whose page you are on.

The OpenKIM machine learning based Deep Citation framework is used to determine whether the citing article actually used the IP in computations (denoted by "USED") or only provides it as a background citation (denoted by "NOT USED"). For more details on Deep Citation and how to work with this panel, click the documentation link at the top of the panel.

The word cloud to the right is generated from the abstracts of IP principle source(s) (given below in "How to Cite") and the citing articles that were determined to have used the IP in order to provide users with a quick sense of the types of physical phenomena to which this IP is applied.

The bar chart shows the number of articles that cited the IP per year. Each bar is divided into green (articles that USED the IP) and blue (articles that did NOT USE the IP).

Users are encouraged to correct Deep Citation errors in determination by clicking the speech icon next to a citing article and providing updated information. This will be integrated into the next Deep Citation learning cycle, which occurs on a regular basis.

OpenKIM acknowledges the support of the Allen Institute for AI through the Semantic Scholar project for providing citation information and full text of articles when available, which are used to train the Deep Citation ML algorithm.

This panel provides information on past usage of this interatomic potential (IP) powered by the OpenKIM Deep Citation framework. The word cloud indicates typical applications of the potential. The bar chart shows citations per year of this IP (bars are divided into articles that used the IP (green) and those that did not (blue)). The complete list of articles that cited this IP is provided below along with the Deep Citation determination on usage. See the Deep Citation documentation for more information.

Help us to determine which of the papers that cite this potential actually used it to perform calculations. If you know, click the  .
Description Reduced activation steels are considered as structural materials for future fusion reactors. Besides iron and the main alloying element chromium, these steels contain other minor alloying elements, typically tungsten, vanadium and tantalum. In this work we study the impact of chromium and tungsten, being major alloying elements of ferritic Fe–Cr–W-based steels, on the stability and mobility of vacancy defects, typically formed under irradiation in collision cascades. For this purpose, we perform ab initio calculations, develop a many-body interatomic potential (EAM formalism) for large-scale calculations, validate the potential and apply it using an atomistic kinetic Monte Carlo method to characterize the lifetime and diffusivity of vacancy clusters. To distinguish the role of Cr and W we perform atomistic kinetic Monte Carlo simulations in Fe–Cr, Fe–W and Fe–Cr–W alloys. Within the limitation of transferability of the potentials it is found that both Cr and W enhance the diffusivity of vacancy clusters, while only W strongly reduces their lifetime. The cluster lifetime reduction increases with W concentration and saturates at about 1-2 at.%. The obtained results imply that W acts as an efficient 'breaker' of small migrating vacancy clusters and therefore the short-term annealing process of cascade debris is modified by the presence of W, even in small concentrations.


HISTORY:

Changes in version 001:
* Parameter files updated to match the latest (version 3) in NIST IPRP. This includes changing the values of 'Infinity' and 'NaN' in FeCrW_d.eam.alloy to 1e+8 and 0.0, respectively, and adding missing rows of zero values to FeCrW_s.eam.fs.
Species
The supported atomic species.
Cr, Fe, W
Disclaimer
A statement of applicability provided by the contributor, informing users of the intended use of this KIM Item.
None
Content Origin NIST IPRP (https://www.ctcms.nist.gov/potentials/Fe.html#Fe-Cr-W)
Contributor Daniel S. Karls
Maintainer Daniel S. Karls
Developer Giovanni Bonny
N. Castin
J. Bullens
A. Bakaev
T.P.C. Klaver
D. Terentyev
Published on KIM 2021
How to Cite

This Simulator Model originally published in [1] is archived in OpenKIM [2-4].

[1] Bonny G, Castin N, Bullens J, Bakaev A, Klaver TCP, Terentyev D. On the mobility of vacancy clusters in reduced activation steels: an atomistic study in the Fe–Cr–W model alloy. Journal of Physics: Condensed Matter. 2013;25(31):315401. doi:10.1088/0953-8984/25/31/315401 — (Primary Source) A primary source is a reference directly related to the item documenting its development, as opposed to other sources that are provided as background information.

[2] Bonny G, Castin N, Bullens J, Bakaev A, Klaver TPC, Terentyev D. LAMMPS EAM potential for Fe-Cr-W developed by Bonny et al. (2013) v001. OpenKIM; 2021. doi:10.25950/a8d59af8

[3] Tadmor EB, Elliott RS, Sethna JP, Miller RE, Becker CA. The potential of atomistic simulations and the Knowledgebase of Interatomic Models. JOM. 2011;63(7):17. doi:10.1007/s11837-011-0102-6

[4] Elliott RS, Tadmor EB. Knowledgebase of Interatomic Models (KIM) Application Programming Interface (API). OpenKIM; 2011. doi:10.25950/ff8f563a

Click here to download the above citation in BibTeX format.
Funding Not available
Short KIM ID
The unique KIM identifier code.
SM_699257350704_001
Extended KIM ID
The long form of the KIM ID including a human readable prefix (100 characters max), two underscores, and the Short KIM ID. Extended KIM IDs can only contain alpha-numeric characters (letters and digits) and underscores and must begin with a letter.
Sim_LAMMPS_EAM_BonnyCastinBullens_2013_FeCrW__SM_699257350704_001
DOI 10.25950/a8d59af8
https://doi.org/10.25950/a8d59af8
https://commons.datacite.org/doi.org/10.25950/a8d59af8
KIM Item TypeSimulator Model
KIM API Version2.2
Simulator Name
The name of the simulator as defined in kimspec.edn.
LAMMPS
Potential Type eam
Simulator Potential hybrid/overlay
Run Compatibility portable-models
Programming Language(s)
The programming languages used in the code and the percentage of the code written in each one.
100.00% F#
Previous Version Sim_LAMMPS_EAM_BonnyCastinBullens_2013_FeCrW__SM_699257350704_000

(Click here to learn more about Verification Checks)

Grade Name Category Brief Description Full Results Aux File(s)
P vc-periodicity-support mandatory
Periodic boundary conditions are handled correctly; see full description.
Results Files
P vc-permutation-symmetry mandatory
Total energy and forces are unchanged when swapping atoms of the same species; see full description.
Results Files
A vc-forces-numerical-derivative consistency
Forces computed by the model agree with numerical derivatives of the energy; see full description.
Results Files
F vc-dimer-continuity-c1 informational
The energy versus separation relation of a pair of atoms is C1 continuous (i.e. the function and its first derivative are continuous); see full description.
Results Files
P vc-objectivity informational
Total energy is unchanged and forces transform correctly under rigid-body translation and rotation; see full description.
Results Files
P vc-inversion-symmetry informational
Total energy is unchanged and forces change sign when inverting a configuration through the origin; see full description.
Results Files
F vc-memory-leak informational
The model code does not have memory leaks (i.e. it releases all allocated memory at the end); see full description.
Results Files
N/A vc-thread-safe mandatory
The model returns the same energy and forces when computed in serial and when using parallel threads for a set of configurations. Note that this is not a guarantee of thread safety; see full description.
Results Files


BCC Lattice Constant

This bar chart plot shows the mono-atomic body-centered cubic (bcc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: W
Species: Fe
Species: Cr


Cohesive Energy Graph

This graph shows the cohesive energy versus volume-per-atom for the current mode for four mono-atomic cubic phases (body-centered cubic (bcc), face-centered cubic (fcc), simple cubic (sc), and diamond). The curve with the lowest minimum is the ground state of the crystal if stable. (The crystal structure is enforced in these calculations, so the phase may not be stable.) Graphs are generated for each species supported by the model.

Species: Fe
Species: Cr
Species: W


Diamond Lattice Constant

This bar chart plot shows the mono-atomic face-centered diamond lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Fe
Species: W
Species: Cr


Dislocation Core Energies

This graph shows the dislocation core energy of a cubic crystal at zero temperature and pressure for a specific set of dislocation core cutoff radii. After obtaining the total energy of the system from conjugate gradient minimizations, non-singular, isotropic and anisotropic elasticity are applied to obtain the dislocation core energy for each of these supercells with different dipole distances. Graphs are generated for each species supported by the model.

(No matching species)

FCC Elastic Constants

This bar chart plot shows the mono-atomic face-centered cubic (fcc) elastic constants predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Cr


FCC Lattice Constant

This bar chart plot shows the mono-atomic face-centered cubic (fcc) lattice constant predicted by the current model (shown in red) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: W
Species: Fe
Species: Cr


FCC Stacking Fault Energies

This bar chart plot shows the intrinsic and extrinsic stacking fault energies as well as the unstable stacking and unstable twinning energies for face-centered cubic (fcc) predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

FCC Surface Energies

This bar chart plot shows the mono-atomic face-centered cubic (fcc) relaxed surface energies predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

SC Lattice Constant

This bar chart plot shows the mono-atomic simple cubic (sc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Cr
Species: W
Species: Fe


Cubic Crystal Basic Properties Table

Species: Cr

Species: Fe

Species: W





Cohesive energy versus lattice constant curve for monoatomic cubic lattices v003

Creators:
Contributor: karls
Publication Year: 2019
DOI: https://doi.org/10.25950/64cb38c5

This Test Driver uses LAMMPS to compute the cohesive energy of a given monoatomic cubic lattice (fcc, bcc, sc, or diamond) at a variety of lattice spacings. The lattice spacings range from a_min (=a_min_frac*a_0) to a_max (=a_max_frac*a_0) where a_0, a_min_frac, and a_max_frac are read from stdin (a_0 is typically approximately equal to the equilibrium lattice constant). The precise scaling and number of lattice spacings sampled between a_min and a_0 (a_0 and a_max) is specified by two additional parameters passed from stdin: N_lower and samplespacing_lower (N_upper and samplespacing_upper). Please see README.txt for further details.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Cohesive energy versus lattice constant curve for bcc Cr v004 view 69214
Cohesive energy versus lattice constant curve for bcc Fe v004 view 72196
Cohesive energy versus lattice constant curve for bcc W v004 view 60223
Cohesive energy versus lattice constant curve for diamond Cr v004 view 57786
Cohesive energy versus lattice constant curve for diamond Fe v004 view 145249
Cohesive energy versus lattice constant curve for diamond W v004 view 60124
Cohesive energy versus lattice constant curve for fcc Cr v004 view 59348
Cohesive energy versus lattice constant curve for fcc Fe v004 view 58622
Cohesive energy versus lattice constant curve for fcc W v004 view 56235
Cohesive energy versus lattice constant curve for sc Cr v004 view 56812
Cohesive energy versus lattice constant curve for sc Fe v004 view 58005
Cohesive energy versus lattice constant curve for sc W v004 view 71559


Dislocation core energy for cubic crystals at a set of dislocation core cutoff radii v002

Creators:
Contributor: qyc081025
Publication Year: 2023
DOI: https://doi.org/10.25950/ebecf626

This Test Driver computes the dislocation core energy of a cubic crystal at zero temperature and pressure for a specific set of dislocation core cutoff radii. First, it generates several periodic atomistic supercells containing a dislocation dipole. After obtaining the total energy of the system from conjugate gradient minimizations, non-singular, isotropic and anisotropic elasticity are applied to obtain the dislocation core energy for each of these supercells with different dipole distances. The supercell is increased in size until the disolcation core energy converges. Finally, after checking the independence of the results from the simulation cell geometry, the dislocation core energies are determined for each dislocation core radius.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Dislocation core energy for bcc W computed at zero temperature for a set of dislocation core cutoff radii with burgers vector [0.5, 0.5, 0.5] along line direction [1, 1, 0] v000 view 8979566
Dislocation core energy for bcc W computed at zero temperature for a set of dislocation core cutoff radii with burgers vector [0.5, 0.5, 0.5] along line direction [1, 1, 1] v000 view 27797923
Dislocation core energy for bcc W computed at zero temperature for a set of dislocation core cutoff radii with burgers vector [0.5, 0.5, 0.5] along line direction [1, 1, 2] v000 view 3265888
Dislocation core energy for bcc W computed at zero temperature for a set of dislocation core cutoff radii with burgers vector [0.5, 0.5, 0.5] along line direction [1, 1, 3] v000 view 15364571
Dislocation core energy for bcc W computed at zero temperature for a set of dislocation core cutoff radii with burgers vector [0.5, 0.5, 0.5] along line direction [1, 1, 4] v000 view 23071634
Dislocation core energy for bcc W computed at zero temperature for a set of dislocation core cutoff radii with burgers vector [0.5, 0.5, 0.5] along line direction [1, 1, 5] v000 view 41838316
Dislocation core energy for bcc W computed at zero temperature for a set of dislocation core cutoff radii with burgers vector [0.5, 0.5, 0.5] along line direction [1, 1, 6] v000 view 40810547
Dislocation core energy for bcc W computed at zero temperature for a set of dislocation core cutoff radii with burgers vector [0.5, 0.5, 0.5] along line direction [1, 1, 7] v000 view 141889158
Dislocation core energy for bcc W computed at zero temperature for a set of dislocation core cutoff radii with burgers vector [0.5, 0.5, 0.5] along line direction [1, 1, -1] v000 view 13111235
Dislocation core energy for bcc W computed at zero temperature for a set of dislocation core cutoff radii with burgers vector [0.5, 0.5, 0.5] along line direction [1, 1, -2] v000 view 20336780
Dislocation core energy for bcc W computed at zero temperature for a set of dislocation core cutoff radii with burgers vector [0.5, 0.5, 0.5] along line direction [2, 2, 3] v000 view 53028552
Dislocation core energy for bcc W computed at zero temperature for a set of dislocation core cutoff radii with burgers vector [0.5, 0.5, 0.5] along line direction [2, 2, 5] v000 view 127597136
Dislocation core energy for bcc W computed at zero temperature for a set of dislocation core cutoff radii with burgers vector [0.5, 0.5, 0.5] along line direction [2, 2, -1] v000 view 120025268
Dislocation core energy for bcc W computed at zero temperature for a set of dislocation core cutoff radii with burgers vector [0.5, 0.5, 0.5] along line direction [2, 2, -3] v000 view 106620521


Elastic constants for cubic crystals at zero temperature and pressure v006

Creators: Junhao Li and Ellad Tadmor
Contributor: tadmor
Publication Year: 2019
DOI: https://doi.org/10.25950/5853fb8f

Computes the cubic elastic constants for some common crystal types (fcc, bcc, sc, diamond) by calculating the hessian of the energy density with respect to strain. An estimate of the error associated with the numerical differentiation performed is reported.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Elastic constants for bcc Cr at zero temperature v006 view 282218
Elastic constants for bcc Fe at zero temperature v006 view 284107
Elastic constants for bcc W at zero temperature v006 view 276499
Elastic constants for diamond Cr at zero temperature v001 view 605297
Elastic constants for diamond Fe at zero temperature v001 view 960545
Elastic constants for fcc Cr at zero temperature v006 view 341009
Elastic constants for sc Cr at zero temperature v006 view 259004
Elastic constants for sc Fe at zero temperature v006 view 276596
Elastic constants for sc W at zero temperature v006 view 294598


Equilibrium structure and energy for a crystal structure at zero temperature and pressure v001

Creators:
Contributor: ilia
Publication Year: 2023
DOI: https://doi.org/10.25950/e8a7ed84

Computes the equilibrium crystal structure and energy for an arbitrary crystal at zero temperature and applied stress by performing symmetry-constrained relaxation. The crystal structure is specified using the AFLOW prototype designation. Multiple sets of free parameters corresponding to the crystal prototype may be specified as initial guesses for structure optimization. No guarantee is made regarding the stability of computed equilibria, nor that any are the ground state.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Equilibrium crystal structure and energy for FeW in AFLOW crystal prototype A7B6_hR13_166_ah_3c v001 view 378041
Equilibrium crystal structure and energy for Cr in AFLOW crystal prototype A_cF4_225_a v001 view 114701
Equilibrium crystal structure and energy for Fe in AFLOW crystal prototype A_cF4_225_a v001 view 226162
Equilibrium crystal structure and energy for W in AFLOW crystal prototype A_cF4_225_a v001 view 120517
Equilibrium crystal structure and energy for Cr in AFLOW crystal prototype A_cI2_229_a v001 view 105351
Equilibrium crystal structure and energy for Fe in AFLOW crystal prototype A_cI2_229_a v001 view 102259
Equilibrium crystal structure and energy for W in AFLOW crystal prototype A_cI2_229_a v001 view 104688
Equilibrium crystal structure and energy for Cr in AFLOW crystal prototype A_cP8_223_ac v001 view 253402
Equilibrium crystal structure and energy for W in AFLOW crystal prototype A_cP8_223_ac v001 view 116320
Equilibrium crystal structure and energy for Cr in AFLOW crystal prototype A_hP2_194_c v001 view 118014
Equilibrium crystal structure and energy for Fe in AFLOW crystal prototype A_hP2_194_c v001 view 122799
Equilibrium crystal structure and energy for Cr in AFLOW crystal prototype A_tP28_136_f2ij v001 view 1348065
Equilibrium crystal structure and energy for Fe in AFLOW crystal prototype A_tP28_136_f2ij v001 view 757260
Equilibrium crystal structure and energy for CrFe in AFLOW crystal prototype AB2_cF24_227_a_d v001 view 839863
Equilibrium crystal structure and energy for CrFe in AFLOW crystal prototype AB3_cF16_225_a_bc v001 view 238383
Equilibrium crystal structure and energy for CrFe in AFLOW crystal prototype AB3_cP4_221_a_c v001 view 116394


Equilibrium structure and energy for a crystal structure at zero temperature and pressure v002

Creators:
Contributor: ilia
Publication Year: 2024
DOI: https://doi.org/10.25950/2f2c4ad3

Computes the equilibrium crystal structure and energy for an arbitrary crystal at zero temperature and applied stress by performing symmetry-constrained relaxation. The crystal structure is specified using the AFLOW prototype designation. Multiple sets of free parameters corresponding to the crystal prototype may be specified as initial guesses for structure optimization. No guarantee is made regarding the stability of computed equilibria, nor that any are the ground state.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Equilibrium crystal structure and energy for CrFe in AFLOW crystal prototype A2B_cF24_227_c_b v002 view 615320
Equilibrium crystal structure and energy for FeW in AFLOW crystal prototype A2B_hP12_194_ah_f v002 view 159070
Equilibrium crystal structure and energy for CrFe in AFLOW crystal prototype A3B_cP4_221_c_a v002 view 138472


Relaxed energy as a function of tilt angle for a symmetric tilt grain boundary within a cubic crystal v003

Creators:
Contributor: brunnels
Publication Year: 2022
DOI: https://doi.org/10.25950/2c59c9d6

Computes grain boundary energy for a range of tilt angles given a crystal structure, tilt axis, and material.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Relaxed energy as a function of tilt angle for a 100 symmetric tilt grain boundary in bcc Fe v001 view 9770221
Relaxed energy as a function of tilt angle for a 110 symmetric tilt grain boundary in bcc Fe v001 view 16716710
Relaxed energy as a function of tilt angle for a 111 symmetric tilt grain boundary in bcc Fe v001 view 7704987
Relaxed energy as a function of tilt angle for a 112 symmetric tilt grain boundary in bcc Fe v001 view 28479884
Relaxed energy as a function of tilt angle for a 100 symmetric tilt grain boundary in fcc Fe v001 view 21948296
Relaxed energy as a function of tilt angle for a 110 symmetric tilt grain boundary in fcc Fe v001 view 191519526
Relaxed energy as a function of tilt angle for a 111 symmetric tilt grain boundary in fcc Fe v001 view 143350386
Relaxed energy as a function of tilt angle for a 112 symmetric tilt grain boundary in fcc Fe v001 view 476563743


Equilibrium lattice constant and cohesive energy of a cubic lattice at zero temperature and pressure v007

Creators: Daniel S. Karls and Junhao Li
Contributor: karls
Publication Year: 2019
DOI: https://doi.org/10.25950/2765e3bf

Equilibrium lattice constant and cohesive energy of a cubic lattice at zero temperature and pressure.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Equilibrium zero-temperature lattice constant for bcc Cr v007 view 343972
Equilibrium zero-temperature lattice constant for bcc Fe v007 view 208786
Equilibrium zero-temperature lattice constant for bcc W v007 view 290722
Equilibrium zero-temperature lattice constant for diamond Cr v007 view 632394
Equilibrium zero-temperature lattice constant for diamond Fe v007 view 232468
Equilibrium zero-temperature lattice constant for diamond W v007 view 341436
Equilibrium zero-temperature lattice constant for fcc Cr v007 view 352069
Equilibrium zero-temperature lattice constant for fcc Fe v007 view 451178
Equilibrium zero-temperature lattice constant for fcc W v007 view 447674
Equilibrium zero-temperature lattice constant for sc Cr v007 view 342182
Equilibrium zero-temperature lattice constant for sc Fe v007 view 192594
Equilibrium zero-temperature lattice constant for sc W v007 view 546743


Equilibrium lattice constants for hexagonal bulk structures at zero temperature and pressure v005

Creators: Daniel S. Karls and Junhao Li
Contributor: karls
Publication Year: 2019
DOI: https://doi.org/10.25950/c339ca32

Calculates lattice constant of hexagonal bulk structures at zero temperature and pressure by using simplex minimization to minimize the potential energy.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Equilibrium lattice constants for hcp Cr v005 view 6013390
Equilibrium lattice constants for hcp Fe v005 view 6228897
Equilibrium lattice constants for hcp W v005 view 6334190


Linear thermal expansion coefficient of cubic crystal structures v002

Creators:
Contributor: mjwen
Publication Year: 2024
DOI: https://doi.org/10.25950/9d9822ec

This Test Driver uses LAMMPS to compute the linear thermal expansion coefficient at a finite temperature under a given pressure for a cubic lattice (fcc, bcc, sc, diamond) of a single given species.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Linear thermal expansion coefficient of bcc Cr at 293.15 K under a pressure of 0 MPa v002 view 385583
Linear thermal expansion coefficient of bcc Fe at 293.15 K under a pressure of 0 MPa v002 view 448591
Linear thermal expansion coefficient of bcc W at 293.15 K under a pressure of 0 MPa v002 view 421553


High-symmetry surface energies in cubic lattices and broken bond model v004

Creators: Matt Bierbaum
Contributor: mattbierbaum
Publication Year: 2019
DOI: https://doi.org/10.25950/6c43a4e6

Calculates the surface energy of several high symmetry surfaces and produces a broken-bond model fit. In latex form, the fit equations are given by:

E_{FCC} (\vec{n}) = p_1 (4 \left( |x+y| + |x-y| + |x+z| + |x-z| + |z+y| +|z-y|\right)) + p_2 (8 \left( |x| + |y| + |z|\right)) + p_3 (2 ( |x+ 2y + z| + |x+2y-z| + |x-2y + z| + |x-2y-z| + |2x+y+z| + |2x+y-z| +|2x-y+z| +|2x-y-z| +|x+y+2z| +|x+y-2z| +|x-y+2z| +|x-y-2z| ) + c

E_{BCC} (\vec{n}) = p_1 (6 \left( | x+y+z| + |x+y-z| + |-x+y-z| + |x-y+z| \right)) + p_2 (8 \left( |x| + |y| + |z|\right)) + p_3 (4 \left( |x+y| + |x-y| + |x+z| + |x-z| + |z+y| +|z-y|\right)) +c.

In Python, these two fits take the following form:

def BrokenBondFCC(params, index):

import numpy
x, y, z = index
x = x / numpy.sqrt(x**2.+y**2.+z**2.)
y = y / numpy.sqrt(x**2.+y**2.+z**2.)
z = z / numpy.sqrt(x**2.+y**2.+z**2.)

return params[0]*4* (abs(x+y) + abs(x-y) + abs(x+z) + abs(x-z) + abs(z+y) + abs(z-y)) + params[1]*8*(abs(x) + abs(y) + abs(z)) + params[2]*(abs(x+2*y+z) + abs(x+2*y-z) +abs(x-2*y+z) +abs(x-2*y-z) + abs(2*x+y+z) +abs(2*x+y-z) +abs(2*x-y+z) +abs(2*x-y-z) + abs(x+y+2*z) +abs(x+y-2*z) +abs(x-y+2*z) +abs(x-y-2*z))+params[3]

def BrokenBondBCC(params, x, y, z):


import numpy
x, y, z = index
x = x / numpy.sqrt(x**2.+y**2.+z**2.)
y = y / numpy.sqrt(x**2.+y**2.+z**2.)
z = z / numpy.sqrt(x**2.+y**2.+z**2.)

return params[0]*6*(abs(x+y+z) + abs(x-y-z) + abs(x-y+z) + abs(x+y-z)) + params[1]*8*(abs(x) + abs(y) + abs(z)) + params[2]*4* (abs(x+y) + abs(x-y) + abs(x+z) + abs(x-z) + abs(z+y) + abs(z-y)) + params[3]
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Broken-bond fit of high-symmetry surface energies in bcc Cr v004 view 4136402
Broken-bond fit of high-symmetry surface energies in bcc Fe v004 view 4395326
Broken-bond fit of high-symmetry surface energies in bcc W v004 view 4441327


Monovacancy formation energy and relaxation volume for cubic and hcp monoatomic crystals v001

Creators:
Contributor: efuem
Publication Year: 2023
DOI: https://doi.org/10.25950/fca89cea

Computes the monovacancy formation energy and relaxation volume for cubic and hcp monoatomic crystals.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Monovacancy formation energy and relaxation volume for bcc Cr view 65593731
Monovacancy formation energy and relaxation volume for bcc Fe view 37669180
Monovacancy formation energy and relaxation volume for bcc W view 60510456


Vacancy formation and migration energies for cubic and hcp monoatomic crystals v001

Creators:
Contributor: efuem
Publication Year: 2023
DOI: https://doi.org/10.25950/c27ba3cd

Computes the monovacancy formation and migration energies for cubic and hcp monoatomic crystals.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Vacancy formation and migration energy for bcc Cr view 67009674
Vacancy formation and migration energy for bcc Fe view 117101872
Vacancy formation and migration energy for bcc W view 159821786
No Driver
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
view 7615563


DislocationCoreEnergyCubic__TD_452950666597_002

ElasticConstantsCubic__TD_011862047401_006

ElasticConstantsHexagonal__TD_612503193866_004

EquilibriumCrystalStructure__TD_457028483760_000

EquilibriumCrystalStructure__TD_457028483760_001

GrainBoundaryCubicCrystalSymmetricTiltRelaxedEnergyVsAngle__TD_410381120771_002

LinearThermalExpansionCoeffCubic__TD_522633393614_001

SurfaceEnergyCubicCrystalBrokenBondFit__TD_955413365818_004

No Driver



Wiki is ready to accept new content.

Login to edit Wiki content