Jump to: Tests | Visualizers | Files | Wiki

SNAP_ChenDengTran_2017_Mo__MO_698578166685_000

Interatomic potential for Molybdenum (Mo).
Use this Potential

Title
A single sentence description.
A spectral neighbor analysis potential for Mo developed by Chi Chen (2019) v000
Description
A short description of the Model describing its key features including for example: type of model (pair potential, 3-body potential, EAM, etc.), modeled species (Ac, Ag, ..., Zr), intended purpose, origin, and so on.
A spectral neighbor analysis potential for Mo. The potential is trained against diverse and large materials data, including bulk bcc Mo, strained bcc Mo, ab-initio molecular dynamics (AIMD) simulated random structures, melted structures, vacancy-containing structures, surfaces, grain boundaries, strained melted structures. The potential gives accurate predictions of structural energies, forces, stresses, elasticity, lattice parameters, vacancy migration barrier, equation-of-state, phonon, free energies, melting point, surface energies, and grain boundary energies.
Species
The supported atomic species.
Mo
Disclaimer
A statement of applicability provided by the contributor, informing users of the intended use of this KIM Item.
This potential is designed for Mo bcc systems. It is not appropriate for other elements. The potential was trained using LAMMPS version 17Nov2016. Newer LAMMPS may see energy differences, but the relative values should remain to be the same.
Content Other Locations https://arxiv.org/abs/1706.09122
https://journals.aps.org/prmaterials/abstract/10.1103/PhysRevMaterials.1.043603
Contributor chc273
Maintainer chc273
Creator
Publication Year 2020
Item Citation

This Model originally published in [1] is archived in OpenKIM [2-5].

[1] Chen C, Deng Z, Tran R, Tang H, Chu I-H, Ong SP. Accurate Force Field for Molybdenum by Machine Learning Large Materials Data. Physical Review Materials. 2017;1(4):043603. doi:10.1103/PhysRevMaterials.1.043603

[2] A spectral neighbor analysis potential for Mo developed by Chi Chen (2019) v000. OpenKIM; 2020. doi:10.25950/63ad82cb

[3] Spectral neighbor analysis potential (SNAP) model driver v000. OpenKIM; 2019. doi:10.25950/f4fae493

[4] Tadmor EB, Elliott RS, Sethna JP, Miller RE, Becker CA. The potential of atomistic simulations and the Knowledgebase of Interatomic Models. JOM. 2011;63(7):17. doi:10.1007/s11837-011-0102-6

[5] Elliott RS, Tadmor EB. Knowledgebase of Interatomic Models (KIM) Application Programming Interface (API). OpenKIM; 2011. doi:10.25950/ff8f563a

Click here to download the above citation in BibTeX format.
Funding Not available
Short KIM ID
The unique KIM identifier code.
MO_698578166685_000
Extended KIM ID
The long form of the KIM ID including a human readable prefix (100 characters max), two underscores, and the Short KIM ID. Extended KIM IDs can only contain alpha-numeric characters (letters and digits) and underscores and must begin with a letter.
SNAP_ChenDengTran_2017_Mo__MO_698578166685_000
DOI 10.25950/63ad82cb
https://doi.org/10.25950/63ad82cb
https://search.datacite.org/works/10.25950/63ad82cb
KIM Item Type
Specifies whether this is a Portable Model (software implementation of an interatomic model); Portable Model with parameter file (parameter file to be read in by a Model Driver); Model Driver (software implementation of an interatomic model that reads in parameters).
Portable Model using Model Driver SNAP__MD_536750310735_000
DriverSNAP__MD_536750310735_000
KIM API Version2.0
Potential Type snap

Verification Check Dashboard

(Click here to learn more about Verification Checks)

Grade Name Category Brief Description Full Results Aux File(s)
P vc-species-supported-as-stated mandatory
The model supports all species it claims to support; see full description.
Results Files
P vc-periodicity-support mandatory
Periodic boundary conditions are handled correctly; see full description.
Results Files
P vc-permutation-symmetry mandatory
Total energy and forces are unchanged when swapping atoms of the same species; see full description.
Results Files
A vc-forces-numerical-derivative consistency
Forces computed by the model agree with numerical derivatives of the energy; see full description.
Results Files
P vc-dimer-continuity-c1 informational
The energy versus separation relation of a pair of atoms is C1 continuous (i.e. the function and its first derivative are continuous); see full description.
Results Files
P vc-objectivity informational
Total energy is unchanged and forces transform correctly under rigid-body translation and rotation; see full description.
Results Files
P vc-inversion-symmetry informational
Total energy is unchanged and forces change sign when inverting a configuration through the origin; see full description.
Results Files
P vc-memory-leak informational
The model code does not have memory leaks (i.e. it releases all allocated memory at the end); see full description.
Results Files
P vc-thread-safe mandatory
The model returns the same energy and forces when computed in serial and when using parallel threads for a set of configurations. Note that this is not a guarantee of thread safety; see full description.
Results Files
N/A vc-unit-conversion mandatory
The model is able to correctly convert its energy and/or forces to different unit sets; see full description.
Results Files

Visualizers (in-page)


BCC Lattice Constant

This bar chart plot shows the mono-atomic body-centered cubic (bcc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Mo


Cohesive Energy Graph

This graph shows the cohesive energy versus volume-per-atom for the current mode for four mono-atomic cubic phases (body-centered cubic (bcc), face-centered cubic (fcc), simple cubic (sc), and diamond). The curve with the lowest minimum is the ground state of the crystal if stable. (The crystal structure is enforced in these calculations, so the phase may not be stable.) Graphs are generated for each species supported by the model.

Species: Mo


Diamond Lattice Constant

This bar chart plot shows the mono-atomic face-centered diamond lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Mo


FCC Elastic Constants

This bar chart plot shows the mono-atomic face-centered cubic (fcc) elastic constants predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

FCC Lattice Constant

This bar chart plot shows the mono-atomic face-centered cubic (fcc) lattice constant predicted by the current model (shown in red) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Mo


FCC Stacking Fault Energies

This bar chart plot shows the intrinsic and extrinsic stacking fault energies as well as the unstable stacking and unstable twinning energies for face-centered cubic (fcc) predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

FCC Surface Energies

This bar chart plot shows the mono-atomic face-centered cubic (fcc) relaxed surface energies predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

SC Lattice Constant

This bar chart plot shows the mono-atomic simple cubic (sc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Mo


Cubic Crystal Basic Properties Table

Species: Mo



Tests

Disclaimer From Model Developer

This potential is designed for Mo bcc systems. It is not appropriate for other elements. The potential was trained using LAMMPS version 17Nov2016. Newer LAMMPS may see energy differences, but the relative values should remain to be the same.



Cohesive energy versus lattice constant curve for monoatomic cubic lattices v003

Creators:
Contributor: karls
Publication Year: 2019
DOI: https://doi.org/10.25950/64cb38c5

This Test Driver uses LAMMPS to compute the cohesive energy of a given monoatomic cubic lattice (fcc, bcc, sc, or diamond) at a variety of lattice spacings. The lattice spacings range from a_min (=a_min_frac*a_0) to a_max (=a_max_frac*a_0) where a_0, a_min_frac, and a_max_frac are read from stdin (a_0 is typically approximately equal to the equilibrium lattice constant). The precise scaling and number of lattice spacings sampled between a_min and a_0 (a_0 and a_max) is specified by two additional parameters passed from stdin: N_lower and samplespacing_lower (N_upper and samplespacing_upper). Please see README.txt for further details.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Cohesive energy versus lattice constant curve for diamond Mo v003 view 595
Cohesive energy versus lattice constant curve for sc Mo v003 view 439


Elastic constants for cubic crystals at zero temperature and pressure v006

Creators:
Contributor: tadmor
Publication Year: 2019
DOI: https://doi.org/10.25950/5853fb8f

Computes the cubic elastic constants for some common crystal types (fcc, bcc, sc, diamond) by calculating the hessian of the energy density with respect to strain. An estimate of the error associated with the numerical differentiation performed is reported.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Elastic constants for diamond Mo at zero temperature v001 view 17106
Elastic constants for sc Mo at zero temperature v006 view 2976


Equilibrium lattice constant and cohesive energy of a cubic lattice at zero temperature and pressure v007

Creators:
Contributor: karls
Publication Year: 2019
DOI: https://doi.org/10.25950/2765e3bf

Equilibrium lattice constant and cohesive energy of a cubic lattice at zero temperature and pressure.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Equilibrium zero-temperature lattice constant for bcc Mo v007 view 1817
Equilibrium zero-temperature lattice constant for diamond Mo v007 view 2099
Equilibrium zero-temperature lattice constant for fcc Mo v007 view 1848
Equilibrium zero-temperature lattice constant for sc Mo v007 view 2005


Equilibrium lattice constants for hexagonal bulk structures at zero temperature and pressure v005

Creators:
Contributor: karls
Publication Year: 2019
DOI: https://doi.org/10.25950/c339ca32

Calculates lattice constant of hexagonal bulk structures at zero temperature and pressure by using simplex minimization to minimize the potential energy.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Equilibrium lattice constants for hcp Mo v005 view 28479





Download Dependency

This Model requires a Model Driver. Archives for the Model Driver SNAP__MD_536750310735_000 appear below.


SNAP__MD_536750310735_000.txz Tar+XZ Linux and OS X archive
SNAP__MD_536750310735_000.zip Zip Windows archive

Wiki

Wiki is ready to accept new content.

Login to edit Wiki content