Title
A single sentence description.
|
LAMMPS BOP potential for the Al-Cu system developed by Zhou, Ward, and Foster (2016) v000 |
---|---|
Description | Al-rich Al1-xCux alloys are important structural materials in the aerospace industry due to their high strength to density ratio. They are also emerging materials for hydrogen containing structures due to their potentially high resistance to hydrogen embrittlement. To enable accurate simulations of the mechanical behavior of Al1-xCux alloys that can guide material improvement, we have developed a high-fidelity analytical bond-order potential (BOP) for the Al-Cu system (the code is publically available in molecular dynamics package LAMMPS). The formalism of the potential is derived from quantum mechanical theories, and the parameters are optimized in an iteration fashion. The iterations begin by fitting properties of a variety of elemental and compound configurations (with coordination varying from 1 to 12) including small clusters, bulk lattices, defects, and surfaces. Following the fitting process, crystalline growth of important equilibrium phases is checked through molecular dynamics simulations of vapor deposition. It is demonstrated that this Al-Cu bond-order potential has unique advantages relative to existing literature potentials in reproducing structural and property tends from experiments and quantum-mechanical calculations, and providing good descriptions of melting temperature, defect characteristics, and surface energies. Most importantly, this BOP is the only potential currently available capable of capturing the Al-rich end of the Al-Cu phase diagram. This capability is rigorously verified by the potential's ability to capture the crystalline growth of the ground-state structures for elemental Al and Cu, as well as, the theta and theta' phases of the Al2Cu compound in vapor deposition simulations. |
Species
The supported atomic species.
| Al, Cu |
Disclaimer
A statement of applicability provided by the contributor, informing users of the intended use of this KIM Item.
|
None |
Content Origin | LAMMPS package 22-Sep-2017 |
Contributor |
Ronald E. Miller |
Maintainer |
Ronald E. Miller |
Published on KIM | 2019 |
How to Cite | Click here to download this citation in BibTeX format. |
Funding | Not available |
Short KIM ID
The unique KIM identifier code.
| SM_566399258279_000 |
Extended KIM ID
The long form of the KIM ID including a human readable prefix (100 characters max), two underscores, and the Short KIM ID. Extended KIM IDs can only contain alpha-numeric characters (letters and digits) and underscores and must begin with a letter.
| Sim_LAMMPS_BOP_ZhouWardFoster_2016_AlCu__SM_566399258279_000 |
DOI |
10.25950/9e693ed2 https://doi.org/10.25950/9e693ed2 https://commons.datacite.org/doi.org/10.25950/9e693ed2 |
KIM Item Type | Simulator Model |
KIM API Version | 2.1 |
Simulator Name
The name of the simulator as defined in kimspec.edn.
| LAMMPS |
Potential Type | bop |
Simulator Potential | bop |
Grade | Name | Category | Brief Description | Full Results | Aux File(s) |
---|---|---|---|---|---|
P | vc-species-supported-as-stated | mandatory | The model supports all species it claims to support; see full description. |
Results | Files |
F | vc-periodicity-support | mandatory | Periodic boundary conditions are handled correctly; see full description. |
Results | Files |
P | vc-permutation-symmetry | mandatory | Total energy and forces are unchanged when swapping atoms of the same species; see full description. |
Results | Files |
B | vc-forces-numerical-derivative | consistency | Forces computed by the model agree with numerical derivatives of the energy; see full description. |
Results | Files |
F | vc-dimer-continuity-c1 | informational | The energy versus separation relation of a pair of atoms is C1 continuous (i.e. the function and its first derivative are continuous); see full description. |
Results | Files |
P | vc-objectivity | informational | Total energy is unchanged and forces transform correctly under rigid-body translation and rotation; see full description. |
Results | Files |
P | vc-inversion-symmetry | informational | Total energy is unchanged and forces change sign when inverting a configuration through the origin; see full description. |
Results | Files |
P | vc-memory-leak | informational | The model code does not have memory leaks (i.e. it releases all allocated memory at the end); see full description. |
Results | Files |
N/A | vc-thread-safe | mandatory | The model returns the same energy and forces when computed in serial and when using parallel threads for a set of configurations. Note that this is not a guarantee of thread safety; see full description. |
Results | Files |
This bar chart plot shows the mono-atomic body-centered cubic (bcc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.
This graph shows the cohesive energy versus volume-per-atom for the current mode for four mono-atomic cubic phases (body-centered cubic (bcc), face-centered cubic (fcc), simple cubic (sc), and diamond). The curve with the lowest minimum is the ground state of the crystal if stable. (The crystal structure is enforced in these calculations, so the phase may not be stable.) Graphs are generated for each species supported by the model.
This bar chart plot shows the mono-atomic face-centered diamond lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.
This graph shows the dislocation core energy of a cubic crystal at zero temperature and pressure for a specific set of dislocation core cutoff radii. After obtaining the total energy of the system from conjugate gradient minimizations, non-singular, isotropic and anisotropic elasticity are applied to obtain the dislocation core energy for each of these supercells with different dipole distances. Graphs are generated for each species supported by the model.
(No matching species)This bar chart plot shows the mono-atomic face-centered cubic (fcc) elastic constants predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.
This bar chart plot shows the mono-atomic face-centered cubic (fcc) lattice constant predicted by the current model (shown in red) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.
This bar chart plot shows the intrinsic and extrinsic stacking fault energies as well as the unstable stacking and unstable twinning energies for face-centered cubic (fcc) predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.
This bar chart plot shows the mono-atomic face-centered cubic (fcc) relaxed surface energies predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.
This bar chart plot shows the mono-atomic simple cubic (sc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.
Test | Test Results | Link to Test Results page | Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.
Measured in Millions of Whetstone Instructions (MWI) |
---|---|---|---|
Cohesive energy versus lattice constant curve for bcc Al v003 | view | 2687 | |
Cohesive energy versus lattice constant curve for bcc Cu v003 | view | 3423 | |
Cohesive energy versus lattice constant curve for diamond Al v003 | view | 2623 | |
Cohesive energy versus lattice constant curve for diamond Cu v003 | view | 2879 | |
Cohesive energy versus lattice constant curve for fcc Al v003 | view | 2751 | |
Cohesive energy versus lattice constant curve for fcc Cu v003 | view | 3359 | |
Cohesive energy versus lattice constant curve for sc Al v003 | view | 2687 | |
Cohesive energy versus lattice constant curve for sc Cu v003 | view | 2847 |
Test | Test Results | Link to Test Results page | Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.
Measured in Millions of Whetstone Instructions (MWI) |
---|---|---|---|
Elastic constants for bcc Al at zero temperature v006 | view | 5566 | |
Elastic constants for bcc Cu at zero temperature v006 | view | 10652 | |
Elastic constants for diamond Al at zero temperature v001 | view | 41426 | |
Elastic constants for diamond Cu at zero temperature v001 | view | 29110 | |
Elastic constants for fcc Al at zero temperature v006 | view | 12028 | |
Elastic constants for fcc Cu at zero temperature v006 | view | 16090 | |
Elastic constants for sc Al at zero temperature v006 | view | 4702 | |
Elastic constants for sc Cu at zero temperature v006 | view | 9373 |
Test | Test Results | Link to Test Results page | Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.
Measured in Millions of Whetstone Instructions (MWI) |
---|---|---|---|
Elastic constants for hcp Al at zero temperature v004 | view | 5030 | |
Elastic constants for hcp Cu at zero temperature v004 | view | 9041 |
Test | Test Results | Link to Test Results page | Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.
Measured in Millions of Whetstone Instructions (MWI) |
---|---|---|---|
Equilibrium zero-temperature lattice constant for bcc Al v007 | view | 3615 | |
Equilibrium zero-temperature lattice constant for bcc Cu v007 | view | 6206 | |
Equilibrium zero-temperature lattice constant for diamond Al v007 | view | 17818 | |
Equilibrium zero-temperature lattice constant for diamond Cu v007 | view | 17914 | |
Equilibrium zero-temperature lattice constant for fcc Al v007 | view | 13052 | |
Equilibrium zero-temperature lattice constant for fcc Cu v007 | view | 14267 | |
Equilibrium zero-temperature lattice constant for sc Al v007 | view | 6526 | |
Equilibrium zero-temperature lattice constant for sc Cu v007 | view | 6302 |
Test | Test Results | Link to Test Results page | Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.
Measured in Millions of Whetstone Instructions (MWI) |
---|---|---|---|
Equilibrium lattice constants for hcp Al v005 | view | 3961290 | |
Equilibrium lattice constants for hcp Cu v005 | view | 3773266 |
Test | Test Results | Link to Test Results page | Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.
Measured in Millions of Whetstone Instructions (MWI) |
---|---|---|---|
Linear thermal expansion coefficient of fcc Al at 293.15 K under a pressure of 0 MPa v001 | view | 104465294 | |
Linear thermal expansion coefficient of fcc Cu at 293.15 K under a pressure of 0 MPa v001 | view | 238052285 |
Test | Test Results | Link to Test Results page | Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.
Measured in Millions of Whetstone Instructions (MWI) |
---|---|---|---|
Phonon dispersion relations for fcc Al v004 | view | 62411 | |
Phonon dispersion relations for fcc Cu v004 | view | 62411 |
Test | Test Results | Link to Test Results page | Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.
Measured in Millions of Whetstone Instructions (MWI) |
---|---|---|---|
Stacking and twinning fault energies for fcc Al v002 | view | 126724871 | |
Stacking and twinning fault energies for fcc Cu v002 | view | 330022708 |
Test | Test Results | Link to Test Results page | Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.
Measured in Millions of Whetstone Instructions (MWI) |
---|---|---|---|
Broken-bond fit of high-symmetry surface energies in fcc Al v004 | view | 345321 | |
Broken-bond fit of high-symmetry surface energies in fcc Cu v004 | view | 612941 |
Test | Error Categories | Link to Error page |
---|---|---|
Stacking and twinning fault energies for fcc Al | other | view |
Stacking and twinning fault energies for fcc Cu | other | view |
Verification Check | Error Categories | Link to Error page |
---|---|---|
ForcesNumerDeriv__VC_710586816390_002 | other | view |
Sim_LAMMPS_BOP_ZhouWardFoster_2016_AlCu__SM_566399258279_000.txz | Tar+XZ | Linux and OS X archive |
Sim_LAMMPS_BOP_ZhouWardFoster_2016_AlCu__SM_566399258279_000.zip | Zip | Windows archive |