Jump to: Tests | Visualizers | Files | Wiki

Sim_LAMMPS_ReaxFF_AryanpourVanDuinKubicki_2010_FeHO__SM_222964216001_000

Title
A single sentence description.
LAMMPS ReaxFF potential for Fe-H-O systems developed by Aryanpour, van Duin, and Kubicki (2010) v000
Description LAMMPS ReaxFF potential for Fe-H-O systems ('pair_style reax/c' with potential file ffield.reax.Fe_O_C_H and additional control and charge equilibration information). The initial force field parameters for the Fe-Fe parameters were taken from an earlier force field development project on bulk-iron metal, based on DFT-calculations on antiferromagnetic BCC and FCC. The DFT data can be found in Ref 31 of the above-mentioned manuscript. The O/H parameters were taken from the ReaxFF bulk water description. The Fe/Fe and O/H parameters were kept fixed to these initial values, whereas the Fe/O parameters were reoptimized against the quantum mechanical results presented in the above-mentioned manuscript.
Species
The supported atomic species.
Fe, H, O
Disclaimer
A statement of applicability provided by the contributor, informing users of the intended use of this KIM Item.
None
Content Origin LAMMPS package 29-Feb-2019
Contributor tadmor
Maintainer tadmor
Author Ellad Tadmor
Publication Year 2019
Item Citation

This Simulator Model originally published in [1] is archived in OpenKIM [2-4].

[1] Aryanpour M, Duin ACT van, Kubicki JD. Development of a Reactive Force Field for Iron–Oxyhydroxide Systems. Journal of Physical Chemistry A. 2010;114(21):6298–307. doi:10.1021/jp101332k

[2] Tadmor E. LAMMPS ReaxFF potential for Fe-H-O systems developed by Aryanpour, van Duin, and Kubicki (2010) v000. OpenKIM; 2019. doi:10.25950/66db8e67

[3] Tadmor EB, Elliott RS, Sethna JP, Miller RE, Becker CA. The potential of atomistic simulations and the Knowledgebase of Interatomic Models. JOM. 2011;63(7):17. doi:10.1007/s11837-011-0102-6

[4] Elliott RS, Tadmor EB. Knowledgebase of Interatomic Models (KIM) Application Programming Interface (API). OpenKIM; 2011. doi:10.25950/ff8f563a

Click here to download the above citation in BibTeX format.
Short KIM ID
The unique KIM identifier code.
SM_222964216001_000
Extended KIM ID
The long form of the KIM ID including a human readable prefix (100 characters max), two underscores, and the Short KIM ID. Extended KIM IDs can only contain alpha-numeric characters (letters and digits) and underscores and must begin with a letter.
Sim_LAMMPS_ReaxFF_AryanpourVanDuinKubicki_2010_FeHO__SM_222964216001_000
DOI 10.25950/66db8e67
https://doi.org/10.25950/66db8e67
https://search.datacite.org/works/10.25950/66db8e67
KIM Item TypeSimulator Model
KIM API Version2.1
Simulator Name
The name of the simulator as defined in kimspec.edn.
LAMMPS
Potential Type reax
Simulator Potential reax/c

Verification Check Dashboard

(Click here to learn more about Verification Checks)

Grade Name Category Brief Description Full Results Aux File(s)
P vc-species-supported-as-stated mandatory
The model supports all species it claims to support; see full description.
Results Files
F vc-periodicity-support mandatory
Periodic boundary conditions are handled correctly; see full description.
Results Files
F vc-permutation-symmetry mandatory
Total energy and forces are unchanged when swapping atoms of the same species; see full description.
Results Files
F vc-forces-numerical-derivative consistency
Forces computed by the model agree with numerical derivatives of the energy; see full description.
Results Files
F vc-dimer-continuity-c1 informational
The energy versus separation relation of a pair of atoms is C1 continuous (i.e. the function and its first derivative are continuous); see full description.
Results Files
F vc-objectivity informational
Total energy is unchanged and forces transform correctly under rigid-body translation and rotation; see full description.
Results Files
F vc-inversion-symmetry informational
Total energy is unchanged and forces change sign when inverting a configuration through the origin; see full description.
Results Files
P vc-memory-leak informational
The model code does not have memory leaks (i.e. it releases all allocated memory at the end); see full description.
Results Files
N/A vc-thread-safe mandatory
The model returns the same energy and forces when computed in serial and when using parallel threads for a set of configurations. Note that this is not a guarantee of thread safety; see full description.
Results Files

Visualizers (in-page)


BCC Lattice Constant

This bar chart plot shows the mono-atomic body-centered cubic (bcc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: H
Species: Fe
Species: O


Cohesive Energy Graph

This graph shows the cohesive energy versus volume-per-atom for the current mode for four mono-atomic cubic phases (body-centered cubic (bcc), face-centered cubic (fcc), simple cubic (sc), and diamond). The curve with the lowest minimum is the ground state of the crystal if stable. (The crystal structure is enforced in these calculations, so the phase may not be stable.) Graphs are generated for each species supported by the model.

(No matching species)

Diamond Lattice Constant

This bar chart plot shows the mono-atomic face-centered diamond lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: O
Species: H
Species: Fe


FCC Elastic Constants

This bar chart plot shows the mono-atomic face-centered cubic (fcc) elastic constants predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

FCC Lattice Constant

This bar chart plot shows the mono-atomic face-centered cubic (fcc) lattice constant predicted by the current model (shown in red) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: H
Species: Fe
Species: O


FCC Stacking Fault Energies

This bar chart plot shows the intrinsic and extrinsic stacking fault energies as well as the unstable stacking and unstable twinning energies for face-centered cubic (fcc) predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

FCC Surface Energies

This bar chart plot shows the mono-atomic face-centered cubic (fcc) relaxed surface energies predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

SC Lattice Constant

This bar chart plot shows the mono-atomic simple cubic (sc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: H
Species: O


Cubic Crystal Basic Properties Table

Species: Fe

Species: H

Species: O



Tests

GrainBoundaryCubicCrystalSymmetricTiltRelaxedEnergyVsAngle__TD_410381120771_002
Computes grain boundary energy for a range of tilt angles given a crystal structure, tilt axis, and material.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
GrainBoundaryCubicCrystalSymmetricTiltRelaxedEnergyVsAngle_bcc100_Fe__TE_175540441720_000 view 127093685
LatticeConstantCubicEnergy__TD_475411767977_007
Equilibrium lattice constant and cohesive energy of a cubic lattice at zero temperature and pressure.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
LatticeConstantCubicEnergy_bcc_Fe__TE_727622321684_007 view 17786
LatticeConstantCubicEnergy_bcc_H__TE_166241045885_007 view 16698
LatticeConstantCubicEnergy_bcc_O__TE_562157456169_007 view 13052
LatticeConstantCubicEnergy_diamond_Fe__TE_099190649546_007 view 57772
LatticeConstantCubicEnergy_diamond_H__TE_257661677950_007 view 32309
LatticeConstantCubicEnergy_diamond_O__TE_381432345133_007 view 39314
LatticeConstantCubicEnergy_fcc_Fe__TE_342002765394_007 view 24696
LatticeConstantCubicEnergy_fcc_H__TE_384479542888_007 view 33460
LatticeConstantCubicEnergy_fcc_O__TE_186542553312_007 view 33173
LatticeConstantCubicEnergy_sc_H__TE_478794314457_007 view 14331
LatticeConstantCubicEnergy_sc_O__TE_577349523939_007 view 11580




Wiki

Wiki is ready to accept new content.

Login to edit Wiki content