Jump to: Tests | Visualizers | Files | Wiki

Sim_LAMMPS_ReaxFF_ChenowethVanDuinGoddard_2008_CHO__SM_584143153761_000

Title
A single sentence description.
LAMMPS ReaxFF potential for hydrocarbon oxidation (C-H-O) developed by Chenoweth, van Duin, and Goddard (2008) v000
Description LAMMPS ReaxFF potential for hydrocarbon oxidation (C-H-O) ('pair_style reax/c' with potential file ffield.reax.cho). To obtain the H/C/O compound data required to extend the hydrocarbon-training set, DFT calculations were performed on the dissociation energies for various bonds containing carbon, oxygen, and hydrogen. The ground state structure was obtained through full geometry optimization. Dissociation curves were calculated by constraining only the bond length of interest and re-optimization of the remaining internal coordinates. Optimization was also performed for the various angles and torsions associated with C/H/O interactions.
Species
The supported atomic species.
C, H, O
Disclaimer
A statement of applicability provided by the contributor, informing users of the intended use of this KIM Item.
None
Content Origin LAMMPS package 29-Feb-2019
Contributor tadmor
Maintainer tadmor
Author Ellad Tadmor
Publication Year 2019
Item Citation

This Simulator Model originally published in [1] is archived in OpenKIM [2-4].

[1] Chenoweth K, Duin ACT van, Goddard WA. ReaxFF Reactive Force Field for Molecular Dynamics Simulations of Hydrocarbon Oxidation. Journal of Physical Chemistry A. 2008;112(5):1040–53. doi:10.1021/jp709896w

[2] Tadmor E. LAMMPS ReaxFF potential for hydrocarbon oxidation (C-H-O) developed by Chenoweth, van Duin, and Goddard (2008) v000. OpenKIM; 2019. doi:10.25950/c9a96783

[3] Tadmor EB, Elliott RS, Sethna JP, Miller RE, Becker CA. The potential of atomistic simulations and the Knowledgebase of Interatomic Models. JOM. 2011;63(7):17. doi:10.1007/s11837-011-0102-6

[4] Elliott RS, Tadmor EB. Knowledgebase of Interatomic Models (KIM) Application Programming Interface (API). OpenKIM; 2011. doi:10.25950/ff8f563a

Click here to download the above citation in BibTeX format.
Short KIM ID
The unique KIM identifier code.
SM_584143153761_000
Extended KIM ID
The long form of the KIM ID including a human readable prefix (100 characters max), two underscores, and the Short KIM ID. Extended KIM IDs can only contain alpha-numeric characters (letters and digits) and underscores and must begin with a letter.
Sim_LAMMPS_ReaxFF_ChenowethVanDuinGoddard_2008_CHO__SM_584143153761_000
DOI 10.25950/c9a96783
https://doi.org/10.25950/c9a96783
https://search.datacite.org/works/10.25950/c9a96783
KIM Item TypeSimulator Model
KIM API Version2.1
Simulator Name
The name of the simulator as defined in kimspec.edn.
LAMMPS
Potential Type reax
Simulator Potential reax/c

Verification Check Dashboard

(Click here to learn more about Verification Checks)

Grade Name Category Brief Description Full Results Aux File(s)
P vc-species-supported-as-stated mandatory
The model supports all species it claims to support; see full description.
Results Files
F vc-periodicity-support mandatory
Periodic boundary conditions are handled correctly; see full description.
Results Files
F vc-permutation-symmetry mandatory
Total energy and forces are unchanged when swapping atoms of the same species; see full description.
Results Files
F vc-forces-numerical-derivative consistency
Forces computed by the model agree with numerical derivatives of the energy; see full description.
Results Files
F vc-dimer-continuity-c1 informational
The energy versus separation relation of a pair of atoms is C1 continuous (i.e. the function and its first derivative are continuous); see full description.
Results Files
F vc-objectivity informational
Total energy is unchanged and forces transform correctly under rigid-body translation and rotation; see full description.
Results Files
F vc-inversion-symmetry informational
Total energy is unchanged and forces change sign when inverting a configuration through the origin; see full description.
Results Files
P vc-memory-leak informational
The model code does not have memory leaks (i.e. it releases all allocated memory at the end); see full description.
Results Files
N/A vc-thread-safe mandatory
The model returns the same energy and forces when computed in serial and when using parallel threads for a set of configurations. Note that this is not a guarantee of thread safety; see full description.
Results Files

Visualizers (in-page)


BCC Lattice Constant

This bar chart plot shows the mono-atomic body-centered cubic (bcc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: O
Species: H
Species: C


Cohesive Energy Graph

This graph shows the cohesive energy versus volume-per-atom for the current mode for four mono-atomic cubic phases (body-centered cubic (bcc), face-centered cubic (fcc), simple cubic (sc), and diamond). The curve with the lowest minimum is the ground state of the crystal if stable. (The crystal structure is enforced in these calculations, so the phase may not be stable.) Graphs are generated for each species supported by the model.

(No matching species)

Diamond Lattice Constant

This bar chart plot shows the mono-atomic face-centered diamond lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: H
Species: O
Species: C


FCC Elastic Constants

This bar chart plot shows the mono-atomic face-centered cubic (fcc) elastic constants predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

FCC Lattice Constant

This bar chart plot shows the mono-atomic face-centered cubic (fcc) lattice constant predicted by the current model (shown in red) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: H
Species: C
Species: O


FCC Stacking Fault Energies

This bar chart plot shows the intrinsic and extrinsic stacking fault energies as well as the unstable stacking and unstable twinning energies for face-centered cubic (fcc) predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

FCC Surface Energies

This bar chart plot shows the mono-atomic face-centered cubic (fcc) relaxed surface energies predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

SC Lattice Constant

This bar chart plot shows the mono-atomic simple cubic (sc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: C
Species: O
Species: H


Cubic Crystal Basic Properties Table

Species: C

Species: H

Species: O



Tests

LatticeConstant2DHexagonalEnergy__TD_034540307932_002
Given atomic species and structure type (graphene-like, 2H, or 1T) of a 2D hexagonal monolayer crystal, as well as an initial guess at the lattice spacing, this Test Driver calculates the equilibrium lattice spacing and cohesive energy using Polak-Ribiere conjugate gradient minimization in LAMMPS
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
LatticeConstant2DHexagonalEnergy_graphene_C__TE_638394465817_002 view 3999
LatticeConstantCubicEnergy__TD_475411767977_007
Equilibrium lattice constant and cohesive energy of a cubic lattice at zero temperature and pressure.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
LatticeConstantCubicEnergy_bcc_C__TE_035231992677_007 view 28822
LatticeConstantCubicEnergy_bcc_H__TE_166241045885_007 view 15035
LatticeConstantCubicEnergy_bcc_O__TE_562157456169_007 view 13787
LatticeConstantCubicEnergy_diamond_C__TE_072855742236_007 view 45232
LatticeConstantCubicEnergy_diamond_H__TE_257661677950_007 view 36531
LatticeConstantCubicEnergy_diamond_O__TE_381432345133_007 view 36403
LatticeConstantCubicEnergy_fcc_C__TE_200775201868_007 view 31413
LatticeConstantCubicEnergy_fcc_H__TE_384479542888_007 view 35220
LatticeConstantCubicEnergy_fcc_O__TE_186542553312_007 view 31957
LatticeConstantCubicEnergy_sc_C__TE_515273288513_007 view 12188
LatticeConstantCubicEnergy_sc_H__TE_478794314457_007 view 13307
LatticeConstantCubicEnergy_sc_O__TE_577349523939_007 view 13307




Wiki

Wiki is ready to accept new content.

Login to edit Wiki content