Jump to: Tests | Visualizers | Files | Wiki

Sim_LAMMPS_ReaxFF_StrachanVanDuinChakraborty_2003_CHNO__SM_107643900657_000

Title
A single sentence description.
LAMMPS ReaxFF potential for RDX (C-H-N-O) systems developed by Strachan et al. (2003) v000
Description LAMMPS ReaxFF potential for RDX (C-H-N-O) systems ('pair_style reax/c' with potential file ffield.reax.rdx and additional control and charge equilibration information). The parameters of the nitramine ReaxFF are based on a large number of ab initio QM calculations. Over 40 reactions and over 1600 equilibrated molecules have been used; they are designed to characterize the atomic interactions under various environments likely and unlikely high energy each atom can encounter. The training set contains bond breaking and compression curves for all possible bonds, angle and torsion bending data for all possible cases, as well as crystal data. See the supplemental material from Phys. Rev. Lett. 2003, 91, 098301 for a detailed description of the parameterization of this force field.
Species
The supported atomic species.
C, H, N, O
Disclaimer
A statement of applicability provided by the contributor, informing users of the intended use of this KIM Item.
None
Content Origin LAMMPS package 29-Feb-2019
Contributor tadmor
Maintainer tadmor
Author Ellad Tadmor
Publication Year 2019
Item Citation

This Simulator Model originally published in [1] is archived in OpenKIM [2-4].

[1] Strachan A, Duin ACT van, Chakraborty D, Dasgupta S, Goddard WA. Shock Waves in High-Energy Materials: The Initial Chemical Events in Nitramine RDX. Physical Review Letters. 2003Aug;91(9):098301. doi:10.1103/PhysRevLett.91.098301

[2] Tadmor E. LAMMPS ReaxFF potential for RDX (C-H-N-O) systems developed by Strachan et al. (2003) v000. OpenKIM; 2019. doi:10.25950/acd3fc89

[3] Tadmor EB, Elliott RS, Sethna JP, Miller RE, Becker CA. The potential of atomistic simulations and the Knowledgebase of Interatomic Models. JOM. 2011;63(7):17. doi:10.1007/s11837-011-0102-6

[4] Elliott RS, Tadmor EB. Knowledgebase of Interatomic Models (KIM) Application Programming Interface (API). OpenKIM; 2011. doi:10.25950/ff8f563a

Click here to download the above citation in BibTeX format.
Short KIM ID
The unique KIM identifier code.
SM_107643900657_000
Extended KIM ID
The long form of the KIM ID including a human readable prefix (100 characters max), two underscores, and the Short KIM ID. Extended KIM IDs can only contain alpha-numeric characters (letters and digits) and underscores and must begin with a letter.
Sim_LAMMPS_ReaxFF_StrachanVanDuinChakraborty_2003_CHNO__SM_107643900657_000
DOI 10.25950/acd3fc89
https://doi.org/10.25950/acd3fc89
https://search.datacite.org/works/10.25950/acd3fc89
KIM Item TypeSimulator Model
KIM API Version2.1
Simulator Name
The name of the simulator as defined in kimspec.edn.
LAMMPS
Potential Type reax
Simulator Potential reax/c

Verification Check Dashboard

(Click here to learn more about Verification Checks)

Grade Name Category Brief Description Full Results Aux File(s)
P vc-species-supported-as-stated mandatory
The model supports all species it claims to support; see full description.
Results Files
F vc-periodicity-support mandatory
Periodic boundary conditions are handled correctly; see full description.
Results Files
F vc-permutation-symmetry mandatory
Total energy and forces are unchanged when swapping atoms of the same species; see full description.
Results Files
F vc-forces-numerical-derivative consistency
Forces computed by the model agree with numerical derivatives of the energy; see full description.
Results Files
F vc-dimer-continuity-c1 informational
The energy versus separation relation of a pair of atoms is C1 continuous (i.e. the function and its first derivative are continuous); see full description.
Results Files
F vc-objectivity informational
Total energy is unchanged and forces transform correctly under rigid-body translation and rotation; see full description.
Results Files
F vc-inversion-symmetry informational
Total energy is unchanged and forces change sign when inverting a configuration through the origin; see full description.
Results Files
P vc-memory-leak informational
The model code does not have memory leaks (i.e. it releases all allocated memory at the end); see full description.
Results Files
N/A vc-thread-safe mandatory
The model returns the same energy and forces when computed in serial and when using parallel threads for a set of configurations. Note that this is not a guarantee of thread safety; see full description.
Results Files

Visualizers (in-page)


BCC Lattice Constant

This bar chart plot shows the mono-atomic body-centered cubic (bcc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: N
Species: O
Species: C


Cohesive Energy Graph

This graph shows the cohesive energy versus volume-per-atom for the current mode for four mono-atomic cubic phases (body-centered cubic (bcc), face-centered cubic (fcc), simple cubic (sc), and diamond). The curve with the lowest minimum is the ground state of the crystal if stable. (The crystal structure is enforced in these calculations, so the phase may not be stable.) Graphs are generated for each species supported by the model.

(No matching species)

Diamond Lattice Constant

This bar chart plot shows the mono-atomic face-centered diamond lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: O
Species: C
Species: N


FCC Elastic Constants

This bar chart plot shows the mono-atomic face-centered cubic (fcc) elastic constants predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

FCC Lattice Constant

This bar chart plot shows the mono-atomic face-centered cubic (fcc) lattice constant predicted by the current model (shown in red) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: C
Species: O
Species: N


FCC Stacking Fault Energies

This bar chart plot shows the intrinsic and extrinsic stacking fault energies as well as the unstable stacking and unstable twinning energies for face-centered cubic (fcc) predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

FCC Surface Energies

This bar chart plot shows the mono-atomic face-centered cubic (fcc) relaxed surface energies predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

SC Lattice Constant

This bar chart plot shows the mono-atomic simple cubic (sc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: C
Species: O
Species: N


Cubic Crystal Basic Properties Table

Species: C

Species: H

Species: N

Species: O



Tests

LatticeConstant2DHexagonalEnergy__TD_034540307932_002
Given atomic species and structure type (graphene-like, 2H, or 1T) of a 2D hexagonal monolayer crystal, as well as an initial guess at the lattice spacing, this Test Driver calculates the equilibrium lattice spacing and cohesive energy using Polak-Ribiere conjugate gradient minimization in LAMMPS
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
LatticeConstant2DHexagonalEnergy_graphene_C__TE_638394465817_002 view 4095
LatticeConstantCubicEnergy__TD_475411767977_007
Equilibrium lattice constant and cohesive energy of a cubic lattice at zero temperature and pressure.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
LatticeConstantCubicEnergy_bcc_C__TE_035231992677_007 view 24919
LatticeConstantCubicEnergy_bcc_N__TE_613577614022_007 view 17722
LatticeConstantCubicEnergy_bcc_O__TE_562157456169_007 view 26455
LatticeConstantCubicEnergy_diamond_C__TE_072855742236_007 view 46032
LatticeConstantCubicEnergy_diamond_N__TE_248372489650_007 view 50127
LatticeConstantCubicEnergy_diamond_O__TE_381432345133_007 view 34996
LatticeConstantCubicEnergy_fcc_C__TE_200775201868_007 view 30422
LatticeConstantCubicEnergy_fcc_N__TE_022839468009_007 view 31093
LatticeConstantCubicEnergy_fcc_O__TE_186542553312_007 view 31477
LatticeConstantCubicEnergy_sc_C__TE_515273288513_007 view 11388
LatticeConstantCubicEnergy_sc_N__TE_268219140650_007 view 12764
LatticeConstantCubicEnergy_sc_O__TE_577349523939_007 view 11996




Wiki

Wiki is ready to accept new content.

Login to edit Wiki content