Title
A single sentence description.
|
LAMMPS PCFF bonded force-field combined with IFF non-bonded 9-6 Lennard-Jones potentials for metal interactions v000 |
---|---|
Citations
This panel presents the list of papers that cite the interatomic potential whose page you are on (by its primary sources given below in "How to Cite"). Articles marked by the green star have been determined to have used the potential in computations (as opposed to only citing it as background information) by a machine learning (ML) algorithm developed by the KIM Team that analyzes the full text of the papers. Articles that do not use it are marked with a null symbol, and in cases where no information is available a question mark is shown. The full text of the articles used to train the ML algorithm is provided by the Allen Institute for AI through the Semantic Scholar project. The word cloud to the right is built from the abstracts of the primary sources and using papers to give a sense of the types of physical phenomena to which this interatomic potential is applied. IMPORTANT NOTE: Usage can only be determined for articles for which Semantic Scholar can provide OpenKIM with the full text. Where this is not the case, we ask the community for help in determining usage. If you know whether an article did or did not use a potential, let us know by clicking the cloud icon by the article and completing a one question form. |
The word cloud indicates applications of this Potential. The bar chart shows citations per year of this Potential. ![]()
Help us to determine which of the papers that cite this potential actually used it to perform calculations. If you know, click the .
|
Description | This "supermodel" allows the use of PCFF bonded force-fields for covalent bonds, and the IFF non-bonded 9-6 Lennard-Jones potentials for interactions with between ceramic inorganics and several face-centered cubic metals (Ag, Al, Au, Cu, Ni, Pb, Pd, Pt). the model reproduces densities, surface tensions, interface properties with water and (bio)organic molecules, as well as mechanical properties in quantitative (<0.1%) to good qualitative (25%) agreement with experiment under ambient conditions. Deviations associated with earlier LJ models have been reduced by 1 order of magnitude due to the precise fit of the new models to densities and surface tensions under standard conditions, which also leads to significantly improved results for surface energy anisotropies, interface tensions, and mechanical properties. The performance is comparable to tight-binding and embedded atom models at up to a million times lower computational cost. The models extend classical simulation methods to metals and a variety of nanostructured materials through the PCFF. Limitations include the neglect of electronic structure effects and the restriction to noncovalent interactions with the metals. |
Species
The supported atomic species.
| Ag, Al, Au, C, Ca, Cu, H, K, Na, Ni, O, P, Pb, Pd, Pt, S, Si |
Disclaimer
A statement of applicability provided by the contributor, informing users of the intended use of this KIM Item.
|
None |
Contributor |
Ronald E. Miller |
Maintainer |
Ronald E. Miller |
Published on KIM | 2019 |
How to Cite |
This Simulator Model originally published in [1-3] is archived in OpenKIM [4-6]. [1] Hill J-R, Sauer J. Molecular Mechanics Potential for Silica and Zeolite Catalysts Based on ab Initio Calculations. 2. Aluminosilicates. The Journal of Physical Chemistry [Internet]. 1995Jun;99(23):9536–50. Available from: https://doi.org/10.1021/j100023a036 doi:10.1021/j100023a036 [2] Heinz H, Vaia RA, Farmer BL, Naik RR. Accurate Simulation of Surfaces and Interfaces of Face-Centered Cubic Metals Using 12-6 and 9-6 Lennard-Jones Potentials. The Journal of Physical Chemistry C [Internet]. 2008Oct;112(44):17281–90. Available from: https://doi.org/10.1021/jp801931d doi:10.1021/jp801931d — (Primary Source) A primary source is a reference directly related to the item documenting its development, as opposed to other sources that are provided as background information. [3] Liu J, Tennessen E, Miao J, Huang Y, Rondinelli JM, Heinz H. Understanding Chemical Bonding in Alloys and the Representation in Atomistic Simulations. The Journal of Physical Chemistry C [Internet]. 2018May;122(26):14996–5009. Available from: https://doi.org/10.1021/acs.jpcc.8b01891 doi:10.1021/acs.jpcc.8b01891 [4] Miller RE. LAMMPS PCFF bonded force-field combined with IFF non-bonded 9-6 Lennard-Jones potentials for metal interactions v000. OpenKIM; 2019. doi:10.25950/9bb85c6e [5] Tadmor EB, Elliott RS, Sethna JP, Miller RE, Becker CA. The potential of atomistic simulations and the Knowledgebase of Interatomic Models. JOM. 2011;63(7):17. doi:10.1007/s11837-011-0102-6 [6] Elliott RS, Tadmor EB. Knowledgebase of Interatomic Models (KIM) Application Programming Interface (API). OpenKIM; 2011. doi:10.25950/ff8f563a Click here to download the above citation in BibTeX format. |
Funding | Not available |
Short KIM ID
The unique KIM identifier code.
| SM_039297821658_000 |
Extended KIM ID
The long form of the KIM ID including a human readable prefix (100 characters max), two underscores, and the Short KIM ID. Extended KIM IDs can only contain alpha-numeric characters (letters and digits) and underscores and must begin with a letter.
| Sim_LAMMPS_IFF_PCFF_HeinzMishraLinEmami_2015Ver1v5_FccmetalsMineralsSolventsPolymers__SM_039297821658_000 |
DOI |
10.25950/9bb85c6e https://doi.org/10.25950/9bb85c6e https://search.datacite.org/works/10.25950/9bb85c6e |
KIM Item Type | Simulator Model |
KIM API Version | 2.1 |
Simulator Name
The name of the simulator as defined in kimspec.edn.
| LAMMPS |
Potential Type | iff |
Simulator Potential | iff/pcff |
Grade | Name | Category | Brief Description | Full Results | Aux File(s) |
---|---|---|---|---|---|
N/A | vc-periodicity-support | mandatory | Periodic boundary conditions are handled correctly; see full description. |
Results | Files |
N/A | vc-memory-leak | informational | The model code does not have memory leaks (i.e. it releases all allocated memory at the end); see full description. |
Results | Files |
This bar chart plot shows the mono-atomic body-centered cubic (bcc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.
(No matching species)This graph shows the cohesive energy versus volume-per-atom for the current mode for four mono-atomic cubic phases (body-centered cubic (bcc), face-centered cubic (fcc), simple cubic (sc), and diamond). The curve with the lowest minimum is the ground state of the crystal if stable. (The crystal structure is enforced in these calculations, so the phase may not be stable.) Graphs are generated for each species supported by the model.
(No matching species)This bar chart plot shows the mono-atomic face-centered diamond lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.
(No matching species)This graph shows the dislocation core energy of a cubic crystal at zero temperature and pressure for a specific set of dislocation core cutoff radii. After obtaining the total energy of the system from conjugate gradient minimizations, non-singular, isotropic and anisotropic elasticity are applied to obtain the dislocation core energy for each of these supercells with different dipole distances. Graphs are generated for each species supported by the model.
(No matching species)This bar chart plot shows the mono-atomic face-centered cubic (fcc) elastic constants predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.
(No matching species)This bar chart plot shows the mono-atomic face-centered cubic (fcc) lattice constant predicted by the current model (shown in red) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.
(No matching species)This bar chart plot shows the intrinsic and extrinsic stacking fault energies as well as the unstable stacking and unstable twinning energies for face-centered cubic (fcc) predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.
(No matching species)This bar chart plot shows the mono-atomic face-centered cubic (fcc) relaxed surface energies predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.
(No matching species)This bar chart plot shows the mono-atomic simple cubic (sc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.
(No matching species)Verification Check | Error Categories | Link to Error page |
---|---|---|
MemoryLeak__VC_561022993723_004 | other | view |
PeriodicitySupport__VC_895061507745_004 | other | view |