Jump to: Tests | Visualizers | Files | Wiki

Sim_LAMMPS_ReaxFF_ChenowethVanDuinPersson_2008_CHOV__SM_429148913211_001

Interatomic potential for Carbon (C), Hydrogen (H), Oxygen (O), Vanadium (V).
Use this Potential

Title
A single sentence description.
LAMMPS ReaxFF potential for reactions between hydrocarbons and vanadium oxide clusters (C-H-O-V) developed by Chenoweth et al. (2008) v001
Description LAMMPS ReaxFF potential for C-H-O-V systems ('pair_style reax/c' with potential file ffield.reax.V_O_C_H and additional control and charge equilibration information). The force field parameters were fit to a large quantum mechanics (QM) training set containing over 700 structures and energetics related to bond dissociations, angle and dihedral distortions, and reactions between hydrocarbons and vanadium oxide clusters. In addition, the training set contains charge distributions for small vanadium oxide clusters and the stabilities of condensed-phase systems including V2O5, VO2, and V2O3 in addition to metallic V (V0).
Species
The supported atomic species.
C, H, O, V
Disclaimer
A statement of applicability provided by the contributor, informing users of the intended use of this KIM Item.
None
Content Origin LAMMPS package 29-Feb-2019
Contributor tadmor
Maintainer tadmor
Creator Ellad Tadmor
Publication Year 2020
Item Citation

This Simulator Model originally published in [1] is archived in OpenKIM [2-4].

[1] Chenoweth K, Duin ACT van, Persson P, Cheng M-J, Oxgaard J, Goddard WA. Development and Application of a ReaxFF Reactive Force Field for Oxidative Dehydrogenation on Vanadium Oxide Catalysts. Journal of Physical Chemistry C. 2008;112(37):14645–54. doi:10.1021/jp802134x — (Primary Source) A primary source is a reference directly related to the item documenting its development, as opposed to other sources that are provided as background information.

[2] LAMMPS ReaxFF potential for reactions between hydrocarbons and vanadium oxide clusters (C-H-O-V) developed by Chenoweth et al. (2008) v001. OpenKIM; 2020. doi:10.25950/dade9954

[3] Tadmor EB, Elliott RS, Sethna JP, Miller RE, Becker CA. The potential of atomistic simulations and the Knowledgebase of Interatomic Models. JOM. 2011;63(7):17. doi:10.1007/s11837-011-0102-6

[4] Elliott RS, Tadmor EB. Knowledgebase of Interatomic Models (KIM) Application Programming Interface (API). OpenKIM; 2011. doi:10.25950/ff8f563a

Click here to download the above citation in BibTeX format.
Funding Not available
Short KIM ID
The unique KIM identifier code.
SM_429148913211_001
Extended KIM ID
The long form of the KIM ID including a human readable prefix (100 characters max), two underscores, and the Short KIM ID. Extended KIM IDs can only contain alpha-numeric characters (letters and digits) and underscores and must begin with a letter.
Sim_LAMMPS_ReaxFF_ChenowethVanDuinPersson_2008_CHOV__SM_429148913211_001
DOI 10.25950/dade9954
https://doi.org/10.25950/dade9954
https://search.datacite.org/works/10.25950/dade9954
KIM Item TypeSimulator Model
KIM API Version2.1
Simulator Name
The name of the simulator as defined in kimspec.edn.
LAMMPS
Potential Type reax
Simulator Potential reax/c
Previous Version Sim_LAMMPS_ReaxFF_ChenowethVanDuinPersson_2008_CHOV__SM_429148913211_000

Verification Check Dashboard

(Click here to learn more about Verification Checks)

Grade Name Category Brief Description Full Results Aux File(s)
P vc-species-supported-as-stated mandatory
The model supports all species it claims to support; see full description.
Results Files
F vc-periodicity-support mandatory
Periodic boundary conditions are handled correctly; see full description.
Results Files
F vc-permutation-symmetry mandatory
Total energy and forces are unchanged when swapping atoms of the same species; see full description.
Results Files
D vc-forces-numerical-derivative consistency
Forces computed by the model agree with numerical derivatives of the energy; see full description.
Results Files
F vc-dimer-continuity-c1 informational
The energy versus separation relation of a pair of atoms is C1 continuous (i.e. the function and its first derivative are continuous); see full description.
Results Files
F vc-objectivity informational
Total energy is unchanged and forces transform correctly under rigid-body translation and rotation; see full description.
Results Files
F vc-inversion-symmetry informational
Total energy is unchanged and forces change sign when inverting a configuration through the origin; see full description.
Results Files
P vc-memory-leak informational
The model code does not have memory leaks (i.e. it releases all allocated memory at the end); see full description.
Results Files
N/A vc-thread-safe mandatory
The model returns the same energy and forces when computed in serial and when using parallel threads for a set of configurations. Note that this is not a guarantee of thread safety; see full description.
Results Files

Visualizers (in-page)


BCC Lattice Constant

This bar chart plot shows the mono-atomic body-centered cubic (bcc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: H
Species: V
Species: O
Species: C


Cohesive Energy Graph

This graph shows the cohesive energy versus volume-per-atom for the current mode for four mono-atomic cubic phases (body-centered cubic (bcc), face-centered cubic (fcc), simple cubic (sc), and diamond). The curve with the lowest minimum is the ground state of the crystal if stable. (The crystal structure is enforced in these calculations, so the phase may not be stable.) Graphs are generated for each species supported by the model.

Species: V
Species: C
Species: O


Diamond Lattice Constant

This bar chart plot shows the mono-atomic face-centered diamond lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: V
Species: O
Species: H
Species: C


FCC Elastic Constants

This bar chart plot shows the mono-atomic face-centered cubic (fcc) elastic constants predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: O
Species: H
Species: V
Species: C


FCC Lattice Constant

This bar chart plot shows the mono-atomic face-centered cubic (fcc) lattice constant predicted by the current model (shown in red) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: H
Species: V
Species: O
Species: C


FCC Stacking Fault Energies

This bar chart plot shows the intrinsic and extrinsic stacking fault energies as well as the unstable stacking and unstable twinning energies for face-centered cubic (fcc) predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

FCC Surface Energies

This bar chart plot shows the mono-atomic face-centered cubic (fcc) relaxed surface energies predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

SC Lattice Constant

This bar chart plot shows the mono-atomic simple cubic (sc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: C
Species: O
Species: H


Cubic Crystal Basic Properties Table

Species: C

Species: H

Species: O

Species: V



Tests



Cohesive energy versus lattice constant curve for monoatomic cubic lattices v003

Creators: Daniel S. Karls
Contributor: karls
Publication Year: 2019
DOI: https://doi.org/10.25950/64cb38c5

This Test Driver uses LAMMPS to compute the cohesive energy of a given monoatomic cubic lattice (fcc, bcc, sc, or diamond) at a variety of lattice spacings. The lattice spacings range from a_min (=a_min_frac*a_0) to a_max (=a_max_frac*a_0) where a_0, a_min_frac, and a_max_frac are read from stdin (a_0 is typically approximately equal to the equilibrium lattice constant). The precise scaling and number of lattice spacings sampled between a_min and a_0 (a_0 and a_max) is specified by two additional parameters passed from stdin: N_lower and samplespacing_lower (N_upper and samplespacing_upper). Please see README.txt for further details.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Cohesive energy versus lattice constant curve for bcc C v003 view 17742
Cohesive energy versus lattice constant curve for bcc O v003 view 2334
Cohesive energy versus lattice constant curve for bcc V v003 view 6873
Cohesive energy versus lattice constant curve for diamond C v003 view 21290
Cohesive energy versus lattice constant curve for diamond O v003 view 13778
Cohesive energy versus lattice constant curve for diamond V v003 view 2653
Cohesive energy versus lattice constant curve for fcc C v003 view 18189
Cohesive energy versus lattice constant curve for fcc O v003 view 26181
Cohesive energy versus lattice constant curve for fcc V v003 view 6425
Cohesive energy versus lattice constant curve for sc C v003 view 2110
Cohesive energy versus lattice constant curve for sc O v003 view 2078


Elastic constants for cubic crystals at zero temperature and pressure v006

Creators: Junhao Li and Ellad Tadmor
Contributor: tadmor
Publication Year: 2019
DOI: https://doi.org/10.25950/5853fb8f

Computes the cubic elastic constants for some common crystal types (fcc, bcc, sc, diamond) by calculating the hessian of the energy density with respect to strain. An estimate of the error associated with the numerical differentiation performed is reported.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Elastic constants for bcc C at zero temperature v006 view 57349
Elastic constants for bcc H at zero temperature v006 view 9430
Elastic constants for bcc O at zero temperature v006 view 22121
Elastic constants for bcc V at zero temperature v006 view 21897
Elastic constants for diamond C at zero temperature v001 view 1758345
Elastic constants for diamond H at zero temperature v001 view 57732
Elastic constants for diamond O at zero temperature v001 view 991137
Elastic constants for diamond V at zero temperature v001 view 28355
Elastic constants for fcc C at zero temperature v006 view 63263
Elastic constants for fcc H at zero temperature v006 view 75314
Elastic constants for fcc O at zero temperature v006 view 71734
Elastic constants for fcc V at zero temperature v006 view 26692
Elastic constants for sc C at zero temperature v006 view 12979
Elastic constants for sc H at zero temperature v006 view 9238
Elastic constants for sc O at zero temperature v006 view 20299


Cohesive energy and equilibrium lattice constant of hexagonal 2D crystalline layers v002

Creators: Ilia Nikiforov
Contributor: ilia
Publication Year: 2019
DOI: https://doi.org/10.25950/dd36239b

Given atomic species and structure type (graphene-like, 2H, or 1T) of a 2D hexagonal monolayer crystal, as well as an initial guess at the lattice spacing, this Test Driver calculates the equilibrium lattice spacing and cohesive energy using Polak-Ribiere conjugate gradient minimization in LAMMPS
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Cohesive energy and equilibrium lattice constant of graphene v002 view 448


Equilibrium lattice constant and cohesive energy of a cubic lattice at zero temperature and pressure v007

Creators: Daniel S. Karls and Junhao Li
Contributor: karls
Publication Year: 2019
DOI: https://doi.org/10.25950/2765e3bf

Equilibrium lattice constant and cohesive energy of a cubic lattice at zero temperature and pressure.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Equilibrium zero-temperature lattice constant for bcc C v007 view 19788
Equilibrium zero-temperature lattice constant for bcc H v007 view 6234
Equilibrium zero-temperature lattice constant for bcc O v007 view 4827
Equilibrium zero-temperature lattice constant for bcc V v007 view 9878
Equilibrium zero-temperature lattice constant for diamond C v007 view 41205
Equilibrium zero-temperature lattice constant for diamond H v007 view 25893
Equilibrium zero-temperature lattice constant for diamond O v007 view 29633
Equilibrium zero-temperature lattice constant for diamond V v007 view 43283
Equilibrium zero-temperature lattice constant for fcc C v007 view 23751
Equilibrium zero-temperature lattice constant for fcc H v007 view 27556
Equilibrium zero-temperature lattice constant for fcc O v007 view 26181
Equilibrium zero-temperature lattice constant for fcc V v007 view 17102
Equilibrium zero-temperature lattice constant for sc C v007 view 4316
Equilibrium zero-temperature lattice constant for sc H v007 view 4507
Equilibrium zero-temperature lattice constant for sc O v007 view 3772


Linear thermal expansion coefficient of cubic crystal structures v001

Creators: Mingjian Wen
Contributor: Mwen
Publication Year: 2019
DOI: https://doi.org/10.25950/fc69d82d

This Test Driver uses LAMMPS to compute the linear thermal expansion coefficient at a finite temperature under a given pressure for a cubic lattice (fcc, bcc, sc, diamond) of a single given species.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Linear thermal expansion coefficient of bcc V at 293.15 K under a pressure of 0 MPa v001 view 316889159


High-symmetry surface energies in cubic lattices and broken bond model v004

Creators: Matt Bierbaum
Contributor: mattbierbaum
Publication Year: 2019
DOI: https://doi.org/10.25950/6c43a4e6

Calculates the surface energy of several high symmetry surfaces and produces a broken-bond model fit. In latex form, the fit equations are given by:

E_{FCC} (\vec{n}) = p_1 (4 \left( |x+y| + |x-y| + |x+z| + |x-z| + |z+y| +|z-y|\right)) + p_2 (8 \left( |x| + |y| + |z|\right)) + p_3 (2 ( |x+ 2y + z| + |x+2y-z| + |x-2y + z| + |x-2y-z| + |2x+y+z| + |2x+y-z| +|2x-y+z| +|2x-y-z| +|x+y+2z| +|x+y-2z| +|x-y+2z| +|x-y-2z| ) + c

E_{BCC} (\vec{n}) = p_1 (6 \left( | x+y+z| + |x+y-z| + |-x+y-z| + |x-y+z| \right)) + p_2 (8 \left( |x| + |y| + |z|\right)) + p_3 (4 \left( |x+y| + |x-y| + |x+z| + |x-z| + |z+y| +|z-y|\right)) +c.

In Python, these two fits take the following form:

def BrokenBondFCC(params, index):

import numpy
x, y, z = index
x = x / numpy.sqrt(x**2.+y**2.+z**2.)
y = y / numpy.sqrt(x**2.+y**2.+z**2.)
z = z / numpy.sqrt(x**2.+y**2.+z**2.)

return params[0]*4* (abs(x+y) + abs(x-y) + abs(x+z) + abs(x-z) + abs(z+y) + abs(z-y)) + params[1]*8*(abs(x) + abs(y) + abs(z)) + params[2]*(abs(x+2*y+z) + abs(x+2*y-z) +abs(x-2*y+z) +abs(x-2*y-z) + abs(2*x+y+z) +abs(2*x+y-z) +abs(2*x-y+z) +abs(2*x-y-z) + abs(x+y+2*z) +abs(x+y-2*z) +abs(x-y+2*z) +abs(x-y-2*z))+params[3]

def BrokenBondBCC(params, x, y, z):


import numpy
x, y, z = index
x = x / numpy.sqrt(x**2.+y**2.+z**2.)
y = y / numpy.sqrt(x**2.+y**2.+z**2.)
z = z / numpy.sqrt(x**2.+y**2.+z**2.)

return params[0]*6*(abs(x+y+z) + abs(x-y-z) + abs(x-y+z) + abs(x+y-z)) + params[1]*8*(abs(x) + abs(y) + abs(z)) + params[2]*4* (abs(x+y) + abs(x-y) + abs(x+z) + abs(x-z) + abs(z+y) + abs(z-y)) + params[3]
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Broken-bond fit of high-symmetry surface energies in bcc V v004 view 563035




Wiki

Wiki is ready to accept new content.

Login to edit Wiki content