Jump to: Models | Files | Wiki

CohesiveEnergyVsLatticeConstant_bcc_Mg__TE_555138003298_002

Title
A single sentence description.
Cohesive energy versus lattice constant curve for bcc Magnesium
Description This Test computes an energy vs. lattice constant curve for bcc Magnesium. The curve is computed for lattice constants ranging from 0.8*a_0 to 1.5*a_0, where a_0 represents the equilibrium lattice constant. The value for a_0 is obtained by querying the KIM database for the results of LatticeConstantCubicEnergy_bcc_Mg when paired against the Model being used.
Species
The supported atomic species.
Mg
Disclaimer
A statement of applicability provided by the contributor, informing users of the intended use of this KIM Item.
None
Contributor Daniel S. Karls
Maintainer Daniel S. Karls
Published on KIM 2018
How to Cite Click here to download this citation in BibTeX format.
Funding Not available
Short KIM ID
The unique KIM identifier code.
TE_555138003298_002
Extended KIM ID
The long form of the KIM ID including a human readable prefix (100 characters max), two underscores, and the Short KIM ID. Extended KIM IDs can only contain alpha-numeric characters (letters and digits) and underscores and must begin with a letter.
CohesiveEnergyVsLatticeConstant_bcc_Mg__TE_555138003298_002
Citable Link https://openkim.org/cite/TE_555138003298_002
KIM Item TypeTest
DriverCohesiveEnergyVsLatticeConstant__TD_554653289799_002
Properties
Properties as defined in kimspec.edn. These properties are inhereted from the Test Driver.
KIM API Version2.0
Simulator Name
The name of the simulator as defined in kimspec.edn. This Simulator Name is inhereted from the Test Driver.
LAMMPS
Programming Language(s)
The programming languages used in the code and the percentage of the code written in each one.
100.00% Python
Previous Version CohesiveEnergyVsLatticeConstant_bcc_Mg__TE_555138003298_001


EAM_Dynamo__MD_120291908751_005
Model Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
EAM_Dynamo_LiuAdams_1998_AlMg__MO_019873715786_000 view 1539
EAM_Dynamo_LiuOhotnickyAdams_1997_AlMg__MO_559870613549_000 view 1283
EAM_Dynamo_MendelevAstaRahman_2009_AlMg__MO_658278549784_005 view 3497
EAM_Dynamo_SunMendelevBecker_2006_Mg__MO_848345414202_005 view 1925
EAM_Dynamo_WilsonMendelev_2016_Mg__MO_574574915905_000 view 2246
EAM_Dynamo_ZhouJohnsonWadley_2004_Mg__MO_137404467969_005 view 1476
EAM_Dynamo_ZhouWadleyJohnson_2001NISTretabulation_Mg__MO_894868634445_000 view 1572
EAM_IMD__MD_113599595631_003
Model Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
EAM_IMD_BrommerBoissieuEuchner_2009_MgZn__MO_710767216198_003 view 5230
EMT_Asap__MD_128315414717_004
Model Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
EMT_Asap_MetalGlass_BaileySchiotzJacobsen_2004_CuMg__MO_228059236215_001 view 1219
LJ__MD_414112407348_003
Model Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
LJ_ElliottAkerson_2015_Universal__MO_959249795837_003 view 995
No Driver
Model Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Sim_LAMMPS_MEAM_JelinekGrohHorstemeyer_2012_AlSiMgCuFe__SM_656517352485_000 view 10139





This Test requires a Test Driver. Archives for the Test Driver CohesiveEnergyVsLatticeConstant__TD_554653289799_002 appear below.


CohesiveEnergyVsLatticeConstant__TD_554653289799_002.txz Tar+XZ Linux and OS X archive
CohesiveEnergyVsLatticeConstant__TD_554653289799_002.zip Zip Windows archive
Wiki is ready to accept new content.

Login to edit Wiki content