Jump to: Models | Files | Wiki

CohesiveEnergyVsLatticeConstant_bcc_Mo__TE_903593174145_003

Title
A single sentence description.
Cohesive energy versus lattice constant curve for bcc Mo v003
Description This Test computes an energy vs. lattice constant curve for bcc Mo. The curve is computed for lattice constants ranging from 0.8*a_0 to 1.5*a_0, where a_0 represents the equilibrium lattice constant. The value for a_0 is obtained by querying the KIM database for the results of LatticeConstantCubicEnergy_bcc_Mo when paired against the Model being used.
Species
The supported atomic species.
Mo
Disclaimer
A statement of applicability provided by the contributor, informing users of the intended use of this KIM Item.
None
Contributor Daniel S. Karls
Maintainer Daniel S. Karls
Published on KIM 2019
How to Cite Click here to download this citation in BibTeX format.
Funding Not available
Short KIM ID
The unique KIM identifier code.
TE_903593174145_003
Extended KIM ID
The long form of the KIM ID including a human readable prefix (100 characters max), two underscores, and the Short KIM ID. Extended KIM IDs can only contain alpha-numeric characters (letters and digits) and underscores and must begin with a letter.
CohesiveEnergyVsLatticeConstant_bcc_Mo__TE_903593174145_003
Citable Link https://openkim.org/cite/TE_903593174145_003
KIM Item TypeTest
DriverCohesiveEnergyVsLatticeConstant__TD_554653289799_003
Properties
Properties as defined in kimspec.edn. These properties are inhereted from the Test Driver.
KIM API Version2.0
Simulator Name
The name of the simulator as defined in kimspec.edn. This Simulator Name is inhereted from the Test Driver.
LAMMPS
Programming Language(s)
The programming languages used in the code and the percentage of the code written in each one.
100.00% Python
Previous Version CohesiveEnergyVsLatticeConstant_bcc_Mo__TE_903593174145_002


EAM_Dynamo__MD_120291908751_005
Model Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
EAM_Dynamo_SmirnovaKuskinStarikov_2013_UMoXe__MO_679329885632_005 view 2591
EAM_Dynamo_ZhouJohnsonWadley_2004_Mo__MO_271256517527_005 view 2303
EAM_Dynamo_ZhouWadleyJohnson_2001NISTretabulation_Mo__MO_230319944007_000 view 2431
EAM_MagneticCubic__MD_620624592962_002
Model Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
EAM_MagneticCubic_DerletNguyenDudarev_2007_Mo__MO_424746498193_002 view 2335
LJ__MD_414112407348_003
Model Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
LJ_ElliottAkerson_2015_Universal__MO_959249795837_003 view 2655
MEAM_LAMMPS__MD_249792265679_001
Model Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
MEAM_LAMMPS_JeongParkDo_2018_PdMo__MO_356501945107_001 view 5271
MEAM_LAMMPS_KimSeolJi_2017_PtMo__MO_831380044253_001 view 5172
MEAM_LAMMPS_LeeBaskesKim_2001_Mo__MO_805823015127_000 view 4237
MEAM_LAMMPS_ParkFellingerLenosky_2012_Mo__MO_269937397263_001 view 2079
MEAM_LAMMPS_WangOhLee_2020_CuMo__MO_380272712420_001 view 4724
MEAM_LAMMPS_WangOhLee_2020_CuMo__MO_486450342170_001 view 5629
Morse_Shifted__MD_552566534109_004
Model Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Morse_Shifted_GirifalcoWeizer_1959HighCutoff_Mo__MO_666830945336_004 view 831
Morse_Shifted_GirifalcoWeizer_1959LowCutoff_Mo__MO_228581001644_004 view 1151
Morse_Shifted_GirifalcoWeizer_1959MedCutoff_Mo__MO_534363225491_004 view 1151
SNAP__MD_536750310735_000
Model Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
SNAP_LiChenZheng_2019_NbTaWMo__MO_560387080449_000 view 282
SNAP_LiHuChen_2018_NiMo__MO_468686727341_000 view 376
SNAP_ZuoChenLi_2019_Mo__MO_014123846623_000 view 564
SNAP_ZuoChenLi_2019quadratic_Mo__MO_692442138123_000 view 533
SW_MX2__MD_242389978788_001
Model Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
SW_MX2_KurniawanPetrieWilliams_2021_MoS__MO_677328661525_000 view 1780
SW_MX2_WenShirodkarPlechac_2017_MoS__MO_201919462778_001 view 2175
Tersoff_LAMMPS__MD_077075034781_005
Model Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Tersoff_LAMMPS_ZhangNguyen_2021_MoSe__MO_152208847456_001 view 2199
No Driver
Model Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Sim_LAMMPS_ADP_StarikovKolotovaKuksin_2017_UMo__SM_682749584055_000 view 1983
Sim_LAMMPS_MEAM_ParkFellingerLenosky_2012_Mo__SM_769176993156_000 view 1887
Sim_LAMMPS_SNAP_ChenDengTran_2017_Mo__SM_003882782678_000 view 2047


  • No Errors associated with this Test




This Test requires a Test Driver. Archives for the Test Driver CohesiveEnergyVsLatticeConstant__TD_554653289799_003 appear below.


CohesiveEnergyVsLatticeConstant__TD_554653289799_003.txz Tar+XZ Linux and OS X archive
CohesiveEnergyVsLatticeConstant__TD_554653289799_003.zip Zip Windows archive
Wiki is ready to accept new content.

Login to edit Wiki content